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BACKGROUND OF THE STUDY 

Increasing evidence has shown that the evolution and spread of antibiotic residence in the 

environment contribute to the occurrence of antibiotic resistance in clinical settings. This suggests 

an urgent need to minimize the public health risks due to the environmental exposure of antibiotic 

resistance. 

Soil microorganisms can be a significant pool of antibiotic resistance since many species 

are capable of producing antibiotic substances (D'Costa et al., 2006; Martinez 2008; Popowska et 

al., 2012) and are naturally antibiotic resistant themselves. Meanwhile, as urban agriculture is 

gaining popularity nationwide, the unique factors associated with urban agricultural production 

may have a significant impact on the persistence of these bacteria. For instance, soil contaminants 

such as heavy metals, antibiotic residues, pesticides, etc. stemming from current agricultural 

practices as well as a legacy of historical residential, industrial, and transportation practices have 

been suggested as antibiotic resistance selective pressure, and thus can shape the composition of 

antibiotic-resistant soil bacteria. Consequently, urban agricultural production offers a unique angle 

to investigate antibiotic resistance in the environment and will provide critical insight into the 

emergence and persistence of antibiotic resistance. 

Vegetables can acquire biological, physical, and/or chemical contaminants from soil either 

by direct contact or through contaminated water. Vegetables contaminated with antibiotic-resistant 

bacteria can then act as a source or carrier of antibiotic resistance and have the potential to cause 

serious public health problems.  

The overall goal of this study was to determine the nature and extent of antibiotic resistance 

in the urban agricultural environment. The major research questions we were trying to answer 

were: 1. Would phenotypic determination alone be able to describe the extent of antibiotic 
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resistance in the environment? 2. What is the correlation between soil contaminants such as metals 

and antibiotics and antibiotic resistance? 3. What is the potential of antibiotic resistance transfer 

in soil bacteria? 4. What is the impact of soil contaminants on vegetables produced in urban 

agriculture in terms of microbial profile and antibiotic resistance genes? 

Urban Agriculture and its importance 

Urban agriculture is becoming more and more popular both in the United States and 

worldwide. According to United Nations Development Programs (UNDP), cities are growing 15% 

of the food worldwide (Smit et al., 1991). Urban agriculture includes gardens and farms which 

cultivate within the cities, for example, community gardens and urban farms, as well as peri-urban 

agriculture which sells their produces directly in the urban markets, for example, farmers markets.   

The socio-economic impacts of the community gardens are the most comprehensively studied 

among all forms of urban agriculture. In the United States most of the researched community 

gardens in this regard are located in the low-income neighborhood of large cities, including 

Detroit, Denver, New York City, and Philadelphia (Blair et al., 1991; Kremer and DeLiberty 2011; 

Park et al., 2011; Teig et al., 2009). Urban agriculture has health, economic, and social impacts on 

urban dwellers which ultimately affects national and universal growth and development. Urban 

agriculture continues to grow momentum as a successful strategy to improve food security in many 

areas (Armstrong 2000; Blair et al., 1991). Moreover, at individual level, community gardeners 

can easily access fresh produce from community gardens and can share excess produce with other 

community people, which would strengthen their bonding. Previous reports documented that, 

consumption of fruits and vegetables were substantially increased among garden participants 

(McCormack et al., 2010; Brown and Jameton 2000).Urban agriculture has a direct impact on 

urban economy by providing skills training and creating new jobs. It is estimated that United States 
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Department of Agriculture (USDA)-funded community food projects has created 2,300 jobs and 

over 3,600 micro-businesses. In addition to its economic impact, urban agriculture affects the lives 

of its community people and gives them the pride of access to their own land. Urban gardening 

not only produces foods but also helps with community development (Holland 2004). 

Antibiotic resistance is a global challenge 

Antibiotic resistance is a growing public health concern worldwide. Center for Disease 

Control and Prevention (CDC) reported that in the U.S. alone, more than 2 million people are 

affected annually by antibiotic-resistant bacterial infections and more than 23000 of them die.  The 

costs to treat these infections are increasing day by day which adversely affects the economic 

growth. In the U.S. approximately $20 billion are spending annually to treat the infections caused 

by antibiotic-resistant bacteria. As bacteria are becoming resistant to more antibiotics it is 

predicted that the economic burden will continue to increase in the future (Solomon and Oliver 

2014).  

Antibiotic resistance to almost all antibiotic classes of clinical importance has been 

reported, including resistance to beta-lactams, quinolones, fluoroquinolones, tetracyclines, 

streptogramins, and lipopeptides etc. The rate of new antibiotic discovery is very low compared to 

the development of drug resistance. For the last three decades no new effective antibiotics have 

entered the market to treat infections (Silver 2011),which presents a great challenge in disease 

control due to lack of effective antibiotics. 

Antibiotic resistance mechanisms 

Microorganisms develop antibiotic resistance through a number of mechanisms, such as 

mutation, increased drug metabolism and increased efflux of antibiotics (Lewis 2013). A known 

mechanism of antibiotic resistance is mutation of the existing DNA (Tenover 2006; Walsh 2000). 
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Increased drug metabolism can trigger antibiotic resistance by overexpressing drug metabolism 

enzymes. For example, overexpression of an enzyme called beta-lactamase can hydrolyze the beta-

lactam rings, a major component of the antibiotics carbapenems and penicillin. Hydrolysis of the 

beta-lactam rings causes inactivation of these antibiotics (Drawz et al., 2014; Poole 2004). 

Increased efflux of antibiotics can facilitate antibiotic resistance too. Efflux pumps can remove 

toxic molecules from cytoplasmic compartment to the extracellular compartment as these pumps 

are highly specific to a group(s) of molecules. Overexpression of these efflux pumps reduces the 

concentration of antibiotics inside the cell by pumping them out into extracellular compartments. 

Lower cellular concentration causes drug inactivity (Piddock 2006).  

Horizontal gene transfer (HGT) is an important mechanism in the spreading of antibiotic 

resistance. HGT is a mechanism by which antibiotic resistant bacteria transfer genetic material 

without sexual involvement to the antibiotic susceptible bacteria when they share the same habitant 

(Thomas and Nielsen 2005; Tenover 2006). HGT makes antibiotic resistance genes available to 

other bacteria in the environment (Martinez 2012). Successful transfer of resistance genes between 

two bacteria by HGT requires share of a common habitat by donor and recipient bacteria (Matte-

Tailliez et al., 2002; Wiedenbeck and Cohan 2011), and usually occurs when donors and recipients 

are phylogenetically related (Philippot et al., 2010; Smillie et al., 2011). The efficiency of HGT 

can be influenced by several factors, including  antibiotics (Jutkina et al., 2016), metals, and 

biocides (Porse et al., 2017).  

HGT occurs via one of the three mechanisms, conjugation, transformation, and 

transduction. Conjugation is a process of transferring genetic material between two bacteria when 

they are physically in contact to each other. Conjugative machinery performs this process. 

Conjugation is the most studied mechanism of HGT (Norman et al., 2009; Guglielmini et al., 
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2013). It is considered the most efficient mechanism for transferring antibiotic resistance genes 

(ARGs) associated conjugative elements, for example, transposons or plasmids (Norman et al., 

2009). The transfer of mobile genetic elements conferring antibiotic resistance has been 

documented in bacteria of soil and water environment (Davison 1999). It has been documented 

that mobile genetic elements (plasmids and transposons) can be transferred between distantly 

related bacteria too (Roberts and Mullany 2009; Tamminen et al., 2012). This broad host range 

indicate the importance of conjugation in spreading and accumulation of ARGs between different 

reservoirs. Plasmids harboring antibiotic resistance determinants can easily spread and disseminate 

in closely or distantly related bacteria. It has been demonstrated that the blaCTX-M ESBL genes can 

be transferred to different plasmids within Enterobacteriace (Canton et al., 2012) and now 

commonly found in human pathogens (Woerther et al., 2013). These genes are now ubiquitous in 

the environment (Hartmann et al., 2012). Moreover, the transfer of antibiotic resistance containing 

plasmids between pathogens are disseminating resistance genes conferring resistance to many 

antibiotic classes, such as beta-lactams, aminoglycosides, quinolones, tetracyclines etc. 

(Huddleston 2014). 

Transformation is a process by which bacteria can uptake naked genetic material from their 

surroundings. Transformation serves as crucial mechanism of horizontal gene transfer among 

various bacterial species. Extracellular DNA are abundant in the nature. A DNA extraction method 

from environmental samples was developed by Mao et al. indicated the abundance of extracellular 

DNA. This study demonstrated that environment could be a potential source of naked DNA with 

antibiotic resistance determinants. These extracellular DNA are readily available for transmission 

of antibiotic resistance by transformation (Mao et al., 2014). In a separate study conducted by 

Chancey et al. was observed that, in streptococcal species, resistance determinants containing 
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transposons can be spread by transformation and conjugation (Chancey et al., 2015). Another 

study demonstrated that, mobile genetic elements can be transferred between distantly related 

species (Domingues et al., 2012). 

Transduction is a process by which bacteria acquire advantageous genes mediated by 

bacteriophages. Study of many environmental samples suggests that bacteriophage can play a big 

role in the dissemination of antibiotic resistance genes, for example, the transfer of gentamicin and 

tetracycline was observed in enterococcus (Fard et al., 2011), the transfer of beta-lactamase genes 

was observed in E. coli (Billard-Pomares et al., 2014) etc. Cite our own study too. Beta-lactam 

resistance genes and mecA were detected in the bacteriophages of the sewage water samples 

(Colomer-Lluch et al., 2011). Multiple studies have detected antibiotic resistance genes in 

bacteriophages isolated from wastewater (Colomer-Lluch et al., 2014a; Colomer-Lluch et al., 

2014b; Calero-Caceres et al., 2014), sludge (Calero-Caceres et al., 2014) and effluent (Marti et 

al., 2014) of wastewater treatment plants, which indicates the importance of bacteriophages as a 

reservoir of antibiotic resistance genes. 

The Role of environmental bacteria in the dissemination of antibiotic resistance 

Approximately 5 × 10 30 bacteria inhabited in this world and the majority of them are non-

pathogenic. Many environmental microorganisms have the ability to produce antibiotics and 

consequently they have also developed defense mechanisms to protect them from the antibiotics 

they produced.  Over the past few decades, antibiotic resistance research mainly focused on 

pathogenic bacteria. Currently a series of investigations concluded that environmental bacteria 

have a significant role in the dissemination of antibiotic resistance alongside the pathogenic 

bacteria (Benveniste and Davies 1973; Cundliffe 1989; Marshall et al., 1998). Antibiotic 

producing non-pathogenic and, or opportunistic pathogens in the environment could play a crucial 
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role in the spread and aggregation of antibiotic resistance. The role of these environmental bacteria 

as a reservoir of antibiotic resistome is becoming the focus of many studies (Allen et al., 2010; 

Canton 2009; Martinez 2009b).  

Many antibiotic resistance genes detected in the clinically significant microorganisms were 

originally identified in the environmental bacteria. Acinetobacter is a gram-negative bacterium 

commonly found in water and soil. Previously isolated Acinetobacter from water and soil source 

was mostly sensitive to antibiotics. But nowadays, Acinetobacter is one of the challenging 

antibiotic-resistant bacteria in clinical settings and difficult to treat due to their multi-drug 

resistance (Maragakis and Perl 2008). Antibiotic-resistant Acinetobacter associated infections are 

spreading fast worldwide. A. baumannii is a multidrug-resistant bacterium which possesses 

resistance mechanisms to many antibiotic classes. Antibiotic resistance genes can also transfer to 

human pathogens from environmental bacteria. The qnr genes, also known as quinolone resistance 

genes, have been detected in the chromosome of Shewanella bacteria commonly found in aquatic 

environment (Poirel et al., 2012). Currently, in the clinical settings the treatment of quinolone 

resistance related infections is problematic due to increased resistance to this drug. Moreover, 

CTX-Ms originally found in Kluyvera species (Sarria et al., 2001). Kluyvera species were isolated 

from many environmental samples, including soil and water (Forsberg et al., 2012b). 

Soil as a reservoir of antibiotic resistance 

Soil is considered one of the major natural habitat for diverse microorganisms. It has been 

reported that 1g of soil contain approximately 10 billion microorganisms and over thousands of 

species (Knietsch et al., 2003). Soil microorganisms are the prime source of antibiotic substances 

and from where majority of the antibiotics used in the clinical and veterinary settings have been 

isolated. It has been estimated that microorganisms can produce around 16,500 antibiotic 
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molecules. Among 16,500 molecules, 52.73% were produced by Actinobacteria, followed by 

29.7% by fungi. Remaining 17.58% antibiotic molecules were also produced by other bacteria 

(Berdy 2005; Fajardo and Martinez 2008). The majority of antibiotic substances are synthesized 

from fungi and Actinobacteria of soil origin. Streptomyces is the most popular species of 

Actinobacteria for synthesizing natural antibiotic substances (Berdy 2005).  

Neshme et al. found that antibiotic resistance genes are ubiquitous in the environment with 

a significant similarity with resistance genes detected in the clinical settings. In this study, 

approximately 30% of the detected resistance genes came from soil samples, indicating the 

significance of soil as a potential source of antibiotic resistance (Nesme et al., 2014). These 

findings suggest that soil microorganisms intrinsically harbor antibiotic resistance determinants. 

In a separate study, authors demonstrated that gut microbiota and soil share a significant number 

of resistance genes with the potential of transferring resistance to antibiotic susceptible bacteria 

(Forsberg et al., 2012b). There might be more shared resistance genes, but limited knowledge of 

known antibiotic resistance genes and lack of procedures for culturing bacteria in traditional lab 

settings are narrowing our knowledge in this regard. These observations indicate a possible role of 

soil microorganisms in the dissemination of antibiotic resistance into pathogens.  

Analysis of an ancient Alaskan soil revealed the presence of DNA sequences homologues 

to antibiotic resistance genes found in clinical settings. This study detected several known tetM 

and beta-lactamases sequences in the studied sample.  Interestingly, a vancomycin conferring 

operon, van HAX was also detected which was commonly found in the clinical settings (D'Costa 

et al., 2011). Antibiotic-resistant bacteria were also identified from a cave soil sample. Some of 

the isolated bacteria were resistant to 14 antibiotics. The cave was segregated from the external 
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world for millions of years. Among the identified antibiotic resistance genes some of them were 

known, but majority of them were unknown (Bhullar et al., 2012).  

Investigation of antibiotic resistance phenotypes by culturing methods 

Soil bacteria can be isolated and characterized by the culturing method. A comprehensive 

study on culturable soil bacteria was conducted by D’Costa et al. In this study, spore forming 

Streptomyces were isolated from various soil samples. A total of 480 Streptomyces strains were 

isolated from collected samples. Recovered strains were tested for 21 antibiotics to determine their 

antibiotic resistance profiles. These tested antibiotics consisted of all known classes of antibiotics, 

from natural to semi-synthetic to synthetic. Surprisingly, all isolated strains were multi-drug 

resistant, and resistance was observed to all 21 antibiotics tested (D'Costa et al., 2006). Similar 

findings were also observed by another study. A total of 412 bacterial strains were isolated from 

ten soil samples collected from different sites. All known classes of antibiotics were tested on the  

isolated bacteria. It was observed that more than 80% of bacteria were resistant to 16 to 23 

antibiotics (Walsh 2013). Antimicrobial susceptibility of culturable soil bacteria was also tested 

by Popowska et al. In this study, bacteria isolated from soil and compost were tested for three 

antibiotics by disk diffusion test, followed by their minimum inhibitory concentration (MIC). The 

MIC data showed coherence with the disk diffusion test. High MIC values of tested antibiotics 

were observed in Chryseobacterium jejuense, Brevendimonas vesicularies, and Aeromonas 

salmonicida. PCR was used to detect antibiotic resistance genes in the resistant isolates. Antibiotic 

resistance genes conferring resistance to tetracycline (tetA, tetB, tetD, tetO, and tetT), 

streptomycin (aac, aadA, strA, and strB), and erythromycin (ermC, ermV, ermX, msrA, oleB, and 

vga) were detected in the resistant isolates (Popowska et al., 2012). 

Culture-based methods to assess antibiotic resistance phenotypes 
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Antibiotic resistance of culturable environmental bacteria can be determined by multiple 

culture-based methods, including broth and agar dilution assays, disk diffusion, and E-tests. 

Broth and agar dilution assays 

Broth dilution assays are used to determine the minimum inhibitory concentration (MIC) 

of the targeted bacteria (Wiegand et al., 2008). The MIC is the minimum concentration of an 

antibiotic at which no visible growth of the bacteria is observed. To determine the MIC, the 

targeted bacterium is incubated for a certain period of time at a specific temperature into the broth 

containing tested antibiotics at an increasing 2-fold concentration. After incubation the MIC is 

determined by measuring the optical density. Depending on the tested antibiotics the range of the 

tested antibiotic concentration varies. The range of the antibiotic concentration should cover to 

define the tested bacterium as resistant compared to the reference organism. The principle of the 

commercially available Sensitire (Trek Diagnostic Systems, Thermo Fisher Scientific) is also 

based on broth dilution. The Clinical and Laboratory Standards Institute (CLSI) guidelines are 

commonly used to interpret the broth dilution assays data.  

Theoretically the concept of agar dilution is similar to the concept of broth dilution. In this 

method, different concentration of the targeted antibiotic is added to the agar plates, followed by 

spreading of the target bacterium onto agar plates. After incubation, the MIC is determined by 

visual inspection of the bacterial growth. 

Disk diffusion method 

In disk diffusion tests, commercially available paper disks containing specific 

concentration of antibiotics are used to determine the zone of inhibition. The CLSI guidelines have 

the interpretive zone of inhibition for reference bacteria from sensitive to resistant. The disk 

diffusion assays are widely used to determine antibiotic resistance of the environmental isolates 
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(Kumar et al., 2013; Zhang et al., 2014). In this method, targeted bacterium of specific 

concentration is spread onto agar plates. Then paper disk with specific concentration of antibiotic 

is placed on agar plates and incubate at respective temperature and time. After incubation, the zone 

of inhibition is measured in millimeter and compared to CLSI guidelines for interpretation. 

E-tests 

The E-test assays combine the concepts of both broth dilution and disk diffusion methods. 

In this assay, a commercially prepared plastic strip containing a gradient of an antibiotic is used. 

The impregnated strip is then placed on the tested bacterium containing agar plates. After 

incubation the MIC is determined by identifying the intersection between zone of inhibition and 

precalibrated strip. 

Investigation of antibiotic resistance by culture-independent methods 

Considering that less than 1% of environmental microorganisms can be cultured under lab 

conditions (Demaneche et al., 2008; Schloss and Handelsman 2003), culturing methods may miss 

a large amount of information associated with non-culturable microorganisms in the environment. 

Applying both culture-dependent and independent tools together would be an ideal strategy to 

characterize soil antibiotic reistome and to understand the extent of the environmental reservoir of 

antibiotic resistance.  

Popowska et al. used a culture-independent qPCR tool to study the relative abundance of 

antibiotic resistance genes in soil DNA. tetM and tetW genes were detected in all soil samples with 

almost equal abundance, although these genes were not detected by PCR in bacterial isolates from 

the same soil samples (Popowska et al., 2012). The qPCR tool was also used to study archived soil 

and broad-spectrum beta-lactam resistance genes (blaTEM, blaSHV, blaOXA, and blaCTX-M) were 

detected,along with class-1 integron genes (Graham et al., 2016). qPCR was also used to determine 
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the absolute abundance of targeted genes. A total of 12 antibiotic resistance genes (sulI, sulII, tetA, 

teAP, tetC, tetG, tetL, tetBP, tetM, tetO, tetW, and tetX) and 1 class-1 integron gene (intI1) were 

detected and quantified by qPCR in soil and vegetable samples (Wang et al., 2014).  

Metagenomics is another powerful tool to study unculturable microorganisms of 

environmental origin. A metagenomic soil library was prepared from four agricultural soil samples 

and further screened for antibiotic resistance genes. A total of 45 clones were detected in the 

constructed soil library conferring resistance to tetracycline, streptomycin, minocycline, 

kanamycin, gentamycin, chloramphenicol, amikacin, and rifampicin (Su et al., 2014). Novel 

antibiotic resistance genes can also be discovered by metagenomics. Kelly at el. screened a soil 

metagenomic DNA library and detected 41 novel genes encoding novel protein variants, including 

aminoglycoside acetyltransferases, dihydrofolate dihydrofolate reductases, and rifampicin ADP-

ribosyltransferases (McGarvey et al., 2012). In another study, 18 soil samples were studied by 

functional metagenomics and screened for antibiotic resistance profiling against 18 antibiotics. 

This study discovered 2,895 antibiotic resistance genes, covering almost all major resistance 

mechanisms, and the majority of them were new(Forsberg et al., 2014). 

Antibiotic selective pressure in agriculture 

Uncontrolled and unwise use of antibiotics is a major driving force for development and 

dissemination of antibiotic resistance. Widely antibiotics are used for treating diseases in animals, 

humans, and crops. Used antibiotics can be incorporated into soil by direct application of manures, 

by using wastewater or effluents for irrigation.  

It is estimated that the consumption of antibiotics in agriculture could range from 63K to 

230K tons worldwide. The number is projected to increase by 67% during the time period of 2010 

to 2030 (Van Boeckel et al., 2015). In the United States livestock uses more than 70% of the 
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clinical antibiotics used for human treatments. The prime purpose of antibiotic usage in livestock 

is growth promotion. Antibiotic usage also promotes the development of antibiotic resistance. It 

was reported that use of sub-therapeutic concentration of antibiotics in agriculture triggered more 

antibiotic-resistant bacteria and antibiotic resistance genes (Zhu et al., 2013a).  

A significant number of studies detected antibiotics from a variety of environmental 

samples worldwide, including macrolides (erythromycin, tylosin, tilmicosin), sulfonamides 

(sulfamethoxazole, sulfadiazine, sulfamethazine), fluroquinolones (ciprofloxacin, norfloxacin, 

enrofloxacin), lincosamides (lincomycin), tetracyclines (tetracycline, oxytetracycline, doxycline), 

thiamphenicol (chloramphenicol), trimethoprim etc. (Zhang et al., 2013; Pruden et al., 2012; 

Bartelt-Hunt et al., 2011).  

The use of antibiotics in animal production can directly introduce antibiotics, antibiotic-

resistant bacteria, and antibiotics resistance genes in the environment. Higher abundance of 

antibiotic-resistant bacteria and antibiotic resistance genes were observed in conventional animal 

production compared to organic production (Peak et al., 2007; Jindal et al., 2006). Increase of 

antibiotic-resistant bacteria and antibiotic resistance genes also observed in manure amended soil 

(Zhou et al., 2010). In a separate study higher concentration of sulfonamide and tetracycline 

resistance genes were detected in a river located near to a dairy farm (Pruden et al., 2006a).  

Compared to livestock use, the amount of antibiotics used in crops is much less. It is 

estimated that 0.2-4% of the total antibiotics consumed by agriculture is used for crops (Azevedo 

et al., 2015). Streptomycin and oxytetracycline are the two major antibiotics used on crops in the 

United States (McManus et al., 2002). Although they suggest that the use of streptomycin 

antibiotics on crops does not increase streptomycin-resistant bacteria and/ or streptomycin 

resistance genes on plants or adjacent soil (McManus et al., 2002)., a previous study recovered 
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oxytetracycline-and streptomycin-resistant Erwinia amylovora, a plant pathogen (Stockwell and 

Duffy 2012), indicating a concern over antibiotic resistance in plants.  

Soil contamination associated with urban agriculture 

Soil contamination is an important issue in urban agriculture. Theoretically, garden soil 

should be contamination free, but in reality, soil has some contaminants at a natural level. These 

natural levels of soil contaminants in urban agriculture can be elevated by introducing 

contaminants from different sources. Past land use history can provide some clues of potential 

sources of contamination in the soil. For example, if a site was previously used for gas station or 

garage, fuels, lubricants, and other chemicals may have entered into soil due to poor storage 

practices. Metals and polycyclic aromatic hydrocarbons (PAHs) from former parking lots can also 

contaminate soil. Among many contaminants, lead is considered as most common contaminant in 

urban soil. Commercial buildings can leave lead containing paints after demolishing which 

eventually introduce lead to the soil. Moreover, vehicle exhaust can emit lead and PAHs into the 

environment. The lands near high-traffic roadways are more prone to lead and PAHs 

contamination. Rain runoff of roofs and other structures could also add contaminants into soil. 

According to Environmental Protection Agency (EPA), in the United States, 23% of the private 

houses built before 1980 have lead in soil at hazardous concentration (Kessler 2013).  

The reduced and controlled use of antibiotics did not eliminate antibiotic resistance both in 

clinical and natural environments (Salyers and AmabileCuevas 1997), which indicates the need to 

identify alternative factors  selecting antibiotic resistance.  

Anthropogenic pollutants can promote the spread and accumulation of antibiotic 

resistance. Metal contamination is commonly found in the environment and anthropogenic-derived 

sources are the major causes of this contamination. Metal contamination could play an important 
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role in the spread and maintenance of antibiotic resistance (Summers 2002; Alonso et al., 2001). 

Many industrial and agricultural practices could introduce metals in the environment. Production 

of steel, batteries, TV tubes etc. can add zinc, cadmium, cobalt, nickel, chromium, and copper into 

the environment. Use of bactericides, fungicides and insecticides can contaminant agricultural soil 

with copper and lead (Diels and Mergeay 1990; Dressler et al., 1991; Mergeay et al., 1985; 

Schmidt and Schlegel 1994).  

Copper (Cu), zinc (Zn), mercury (Hg), lead (Pb), and cadmium (Cd) are major metal 

contaminants in soils (Han et al., 2002; Nemecek et al., 2011). Use of metal containing fertilizer, 

liquid manure, and sewage sludge are commonly practiced in agriculture. These applications can 

introduce those metals in the soil. Use of copper (Cu) containing pesticides can also pollute the 

soil. These pesticides are frequently used in agriculture due to their fungicidal and bactericidal 

properties (Nemecek et al., 2011). 

Co-selection of antibiotic resistance by metals 

A number of studies documented that metal resistance coexisted with antibiotic resistance 

(Belliveau et al., 1991; Mcentee et al., 1986). Metals can co-select antibiotic resistance by two 

important mechanisms, co-resistance and cross-resistance (Ashbolt et al., 2013; Berg et al., 2010; 

Perry and Wright 2013). 

Co-resistance occurs when antibiotic resistance genes and metal resistance genes are 

physically linked to each other and located on the same genetic elements, for example, plasmid, 

integron or transposon. This physical linkage between antibiotic resistance genes and metal 

resistance genes were widely observed in plasmids which promotes co-selection of antibiotic 

resistance genes (Chapman 2003). A study conducted by Summers et al observed the transfer of 

antibiotic resistance along with mercury resistance, where mercury resistance gene and antibiotic 
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resistance gene were linked genetically and were located on the same plasmid (Summers et al., 

1993). In a separate study, correlation was observed between copper resistance and macrolide 

resistance in Enterococcus faecium. Transconjugant E. faecium showed resistance to both copper 

and macrolides which indicates the successful co-transfer of copper and macrolide resistance 

determinants (Hasman and Aarestrup 2002). Later on, the physical linkage between copper 

resistance conferred by tcrB gene and macrolide resistance conferred by vanA gene, was 

established (Hasman and Aarestrup 2005).  

Integrons, which are the part of transposons, can contain resistance determinants in their 

gene cassettes. Integrons can acquire or transfer these resistance determinants containing gene 

cassettes. The class 1 integrons are clinically significant and widely found in the contaminated 

areas. The gene cassettes of class 1 integrons can mediate antibiotic resistance, thus class 1 

integrons can play a vital role in the co-selection of resistance determinants. Environmental 

pollution with metals can trigger this co-selection. High abundance of class 1 integrons were 

observed in heavy metal contaminated environments (Rosewarne et al., 2010; Wright et al., 2008). 

Cross-resistance is another important mechanism of co-selection of antibiotic resistance. 

In this mechanism two different antimicrobial agents share the same mechanism to kill the targeted 

cell. As a result, the cell develop resistance to one antimicrobial agent to avoid the cell damage. 

This development of resistance to one antimicrobial agent accompanied by development of 

resistance to second antimicrobial agents too, which shared the same route to destroy the cell 

(Chapman 2003). In one study, more antibiotic resistance was observed in E. coli and Enterobacter 

cloacae isolates when they were grown in the presence of metal vanadate vs in the absence of 

vanadate, which suggests a cross-resistance facilitated by multi-drug resistance (MDR) efflux 

system (Hernandez et al., 1998). 
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Many studies investigated the co-selection of antibiotic resistance by metals in the 

environments. Zinc and copper concentration in the soil showed a positive correlation with beta-

lactam resistance (Holzel et al., 2012; Hu et al., 2016). Along with beta-lactam, zinc and copper 

also showed a strong positive correlation with tetracycline resistance (Peltier et al., 2010; Knapp 

et al., 2010), erythromycin resistance (Knapp et al., 2010), and sulphonamide resistance (Ji et al., 

2012). A study on 90 soil samples collected from Western Australia demonstrated a significant 

correlation between metal concentration and absolute abundance of antibiotic resistance genes. 

Elevated concentration of manganese and vanadium showed greatest significant correlation with 

blaTEM, blaCTX, blaOXA, tetM, tetW, sul1 nad sul2 genes. Significant correlation was also observed 

between copper with blaTEM, blaOXA and tetM, and aluminium with blaTEM, blaOXA, tetM, 

tetW, sul2 and sul3 (Knapp et al., 2017). Co-selection was also observed in the bacteria isolated 

from copper-contaminated agricultural fields. These copper resistant isolates showed higher 

resistance to metals including, calcium, zinc, cadmium, cobalt and to antibiotics including, 

streptomycin, ampicillin, spiramycin, and olaquindox (Huysman et al., 1994).  
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CHAPTER 1: PREVALENCE OF ANTIBIOTIC RESISTANCE PHENOTYPES IN 

URBAN AGRICULTURAL SOILS 

 

1. Introduction 

Increasing evidence has shown that the evolution and spread of antibiotic resistance in the 

environment contribute to the occurrence of antibiotic resistance in clinical or urban settings 

(Canton 2009; Martinez 2009a; Wright 2010; Berendonk et al., 2015). Many antibiotic resistance 

genes found in pathogenic bacteria have evolved or are acquired from environmental microbial 

communities (Martinez 2009b). This suggests an urgent need to understand the public health 

significance of the environmental antibiotic resistome. However, the extent of the environmental 

reservoir of antibiotic resistance is yet to be well investigated as compared to that in clinical 

settings. The problem is even more complicated in agriculture where different environmental 

conditions and agricultural practices may exert unique impact on the prevalence and persistence 

of antibiotic resistance.  

Soil microorganisms are a significant pool of antibiotic resistance since many species are 

capable of producing antibiotic substances and are naturally antibiotic resistant (D'Costa et al., 

2006; Martinez 2008). High prevalence of antibiotic resistance phenotypes have been observed in 

common antibiotic categories, including those of human clinical importance, such as 

aminoglycocide, β-lactam, glycopeptides, macrolides, quinolones, streptogramins, tetracyclines, 

and trimethoprim/sulfamethoxazole. A study analyzed a morphologically diverse collection of 

Streptomyces from soil samples originating from urban, agricultural, and forest sites, and found 

that all strains recovered were multidrug resistant to 7 or 8 antibiotics on average, with two strains 

being resistant to 15 of 21 antibiotics tested (D'Costa et al., 2006). Antibiotic-resistant bacteria of 

diverse genera recovered from agricultural, urban, and pristine soils were found to be multidrug 

resistant, including more than 80% of the isolates resistant to 16-23 antibiotics (Walsh and Duffy 
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2013). Despite the variation in resistance levels across soil types, the possibility of anthropogenic 

effects was ruled out, suggesting a natural habitat of antibiotic resistance in the environment. A 

Polish study examined soils from agricultural systems, including arable farmland, vegetable 

garden, fruit orchard, composted, and forest soils, and concluded that both manure- and non-

manure- amended soils were contaminated with bacteria resistant to tetracycline, streptomycin, 

and erythromycin (Popowska et al., 2012).  

The aim of this Chapter was to investigate antibiotic resistome in urban agricultural soil. A 

total of 41 samples were extensively studied in terms of soil bacteria composition by the culturing 

method and high-throughput 16S rRNA sequencing as well as antibiotic susceptibility profiling by 

Sensititre.  

2. Materials and Methods 

2.1 Sample collection 

A total of 41 soil samples were collected at a depth of 0-7.5 cm from an urban garden located 

in Detroit, Michigan, USA, in the summer of 2015. The garden used plant compost and received 

no manure amendment, which was a common practice in many urban gardens in the metro Detroit 

area. Each sample of 1 kg was pooled by five subsamples collected approximately 10 cm from 

each other at the center and four corners around the same sampling point.  Samples were put into 

a zip-lock bag and transported to the lab in a cooler before bacteria isolation. The remainder of 

samples was stored at -80 °C for further analysis.  

2.2 Isolation and identification of antibiotic-resistant soil bacteria 

Fifty grams of the sample was mixed with 450 mL of brain heart infusion (BHI) (Difco, Sparks, 

MD) in a sterile stomacher bag. The mixture was homogenized by manual agitation. Soil bacteria 

were isolated using an R2A agar (Difco), supplemented with ampicillin, streptomycin, and 
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tetracycline, individually, at 20 µg/mL (D'Costa et al., 2006). Agar plates were incubated at 30°C 

for 4 to 5 days and up to 5 colonies of different morphology were picked for purification.  

Bacteria were identified by 16S rRNA gene sequencing. DNA was extracted using a boiling 

method (Hanssen et al., 2004). Primers 27F (AGAGTTTGATCCTGGCTCAG) and 1492R 

(GGTTACCTTGTTACGACTT) were used to amplify the 16S rRNA gene (Popowska et al., 

2012). PCR reactions of 25 µl included 5 µl of template DNA, 0.5 µM of each primer, 1× PCR 

buffer, 4.0 mM of MgCl2, 200 µM of each dNTP, and 1U TaqDNA polymerase (Promega, 

Madison, WI). PCR was conducted in a Mastercycler (Eppendorf, Westbury, NY) under the 

following conditions: 15 min at 95°C, followed by 35 cycles of 1 min at 95°C, 45 s at 50°C, and 

1.5 min at 72°C, with one final cycle of 10 min at 72°C. DNA amplicons were electrophoresed on 

a 1.5 % agarose gel for 1.5 h at 100V and visualized under UV, followed by DNA sequencing at 

Eton Bioscience Laboratories, NJ. Resulted DNA sequences were analyzed using the Ribosomal 

Database Project (RDP) website (http://rdp.cme.msu.edu). 

2.3 Antibiotic Susceptibility Testing  

Antibiotic resistance phenotypes were determined by using the Sensititre Antimicrobial 

Susceptibility System (Trek Diagnostic Systems, Westlake, OH). Minimum Inhibitory 

Concentration (MIC) was measured using the Gram-positive and Gram-negative MIC plates and 

interpreted according to the resistance breakpoints for Escherichia coli (E. coli) and 

Staphylococcus aureus (S. aureus) recommended by the Clinical and Laboratory Standards 

Institute (CLSI) guidelines. The MICs were determined for 14 antibiotics (ampicillin, 

amoxicillin/clavulanic acid 2:1 ratio, azithromycin, cefoxitin, ceftiofur, ceftriaxone, 

chloramphenicol, ciprofloxacin, gentamicin, nalidixic acid, streptomycin, sulfisoxazole, 

tetracycline and trimethoprim/sulfamethoxazole) for Gram-negative bacteria and 16 antibiotics 

http://rdp.cme.msu.edu/
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(chloramphenicol, ciprofloxacin, daptomycin, erythromycin, gentamicin, kanamycin, lincomycin, 

linezolid, nitrofurantoin, penicillin, quinupristin/dalfopristin, streptomycin, tetracycline, 

tigecycline, tylosin tartrate and vancomycin) for Gram-positive bacteria. E. coli ATCC 25922 and 

S. aureus ATCC 29213 were used as reference strains. 

2.4 Determination of soil microbial composition by high-throughput 16S rRNA sequencing 

Fourteen soil samples were randomly selected for the determination of microbial composition. 

Ten grams of each soil sample was weighed into one 50 mL tube followed by shaking for 

homogenization. The DNA was extracted from 0.25 g of each homogenized soil sample using the 

DNeasy PowerSoil kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. The 

quality and quantity of extracted DNA were assessed using the NanoDrop 2000 spectrophotometer 

(Thermo Fisher Scientific, Waltham, MA) and the Qubit 3.0 fluorometer (Thermo Fisher 

Scientific). A 16S rDNA sequencing library was constructed using 16S Metagenomic Sequencing 

Library Preparation protocol (Illumina, San Diego, CA) modified by Dr. Karen Jarvis from FDA. 

Briefly, Omni Klentaq PCR Kit (DNA Polymerase Technology, St. Louis, MO) was used for initial 

PCR using locus-specific primers to amplify the V1-V3 hyper-variable region of the bacterial 16S 

rRNA gene (Chakravorty et al., 2007; Klindworth et al., 2013; Lusk et al., 2012; Yarza et al., 

2014). The Illumina sequencing adapters and dual-index barcodes were added to the purified PCR 

products using Nextera XT Index Kit (Illumina) by a limited cycle PCR. Prepared libraries were 

sequenced on the MiSeq sequencing platform (Illumina) using paired 300-bp reads and MiSeq v3 

reagents, following standard Illumina sequencing protocols. Data were analyzed using 

Metagenomics workflow to perform a taxonomic classification against the Greengenes database.  

3. Results 

3.1 Isolation and identification of soil bacteria 
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A total of 207 soil bacteria were recovered, including 190 Gram-negative and 17 Gram-

positive. The bacteria belonged to four phyla, Bacteroidetes (53.10%), Proteobacteria (38.65%), 

Firmicutes (6.76%), and Actinobacteria (1.45%) (Figure 1a). Out of 27 genera identified, 

Chryseobacterium (n=70, 33.82%), Stenotrophomonas (n=38, 18.36%), and Sphingobacterium 

(n=26, 12.56%) were the most prevalent Gram-negative bacteria (Figure 1b). Lysinibacillus (n=9, 

4.35%) predominated in Gram-positive bacteria. Approximately 18% of isolates belonged to other 

genera. Heterogeneity was observed within samples. Samples E01 and E13 had isolates belonging 

to multiple genera in phylum Proteobacteria. Bacteria from different phyla, for example, 

Proteobacteria and Bacteroidetes, were present in the same soil sample, including E19, E20, E35, 

E44, E59 and E61. 
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(a)                                                                              (b) 

Figure 1. Microbial Composition Determined by Bacteria Identification  

Legend: 

(a) Phylum distribution in soil bacteria (n=207) 

(b) Genus distribution in soil bacteria (n=207) 

Numbers shown in the pie chart were percentages of each phylum or genus in total identified 

bacteria. 

 

3.2 Antibiotic resistance phenotypes of soil bacteria 

The MIC data were interpreted for nine antibiotics each for Gram-negative and Gram-positive 

bacteria based on the resistance breakpoints of E. coli and S. aureus. The 190 Gram-negative 

bacteria showed highest resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), 

cefoxitin (79.5%), gentamicin (78.4%), ceftriaxone (71.1%), amoxicillin/clavulanic acid (64.2%), 

tetracycline (51.6%), nalidixic acid (37.4%, and ciprofloxacin (33.2%). All 17 Gram-positive 

bacteria were resistant to gentamicin, kanamycin, and penicillin (100%). They were also resistant 

to erythromycin (41.2%), ciprofloxacin (29.4%), quinopristine/dalphopristine (29.4%), 

tetracycline (23.5%), chloramphenicol (17.6%) and vancomycin (11.8%). For those antibiotics 

that interpretation breakpoints were unavailable for E. coli or S. aureus, most Gram-negative 

bacteria fell under the highest range of MIC to azithromycin, ceftiofur, sulfisoxazole, and 

streptomycin, so did Gram-positive bacteria to streptomycin and lincomycin.  
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Top six Gram-negative genera comprised of 161 of 190 isolates (84.7%). A vast majority of 

these isolates fell under the highest MIC for ampicillin, amoxicillin/clavulanic acid, cefoxitin, 

ceftriaxone, and gentamicin (Figure 2). The MIC distribution varied by genus and antibiotic 

category. Chryseobacterium was the most common Gram-negative genus identified and also 

accounted for the highest percentage of antibiotic-resistant bacteria in most antibiotic categories, 

such as ampicillin (44.3%, 70/158), amoxicillin/clavulanic acid (54.9%, 62/113), cefoxitin (42.8%, 

59/138), ceftriaxone (57.9%, 70/121), chloramphenicol (48.9%, 64/131), gentamicin (46.7%, 

50/107), and tetracycline (54.7%, 70/128). However, Chryseobacterium was outnumbered by 

other genera in quinolone-resistant bacteria as evidenced by 4 Chryseobacterium (7.4%) versus 35 

Stenotrophomonas (64.8%) out of 54 ciprofloxacin-resistant bacteria, and 3 Chryseobacterium 

(5.4%) versus 21 Sphingobacterium (37.5%) out of 56 nalidixic acid-resistant bacteria (Figure 2). 

Chryseobacterium was predominant in nalidixic acid- and ciprofloxacin-susceptible bacteria, with 

63.8% (67/105) and 61.7% (66/107), respectively. As the third most popular genus identified, 

Sphingobacterium accounted for only 3/113 (2.6%), 2/121 (1.6%), and 5/54 (9.2%) in bacteria 

resistant to amoxicillin/clavulanic acid, ceftriaxone, and ciprofloxacin, respectively. 

For Gram-positive bacteria, the top four genera covered 16 of the total 17 isolates (94.1%) and 

were all resistant to gentamicin, kanamycin, and penicillin (Figure 3). Lysinibacillus was resistant 

to all nine antibiotics tested, and Microbacterium demonstrated resistance to all antibiotics except 

for vancomycin. Lysinibacillus was the most prevalent genus in bacteria resistant to erythromycin 

(3 of 6), gentamicin (9 of 16), kanamycin (9 of 16), and penicillin (9 of 16). Lysinibacillus and 

Microbacterium were the only two genera and equally prevalent in bacteria resistant to 

chloramphenicol, ciprofloxacin, and quinopristine/dalfopristine. Microbacterium outnumbered 

Lysinibacillus by one for tetracycline resistance. The only two vancomycin-resistant bacteria were 
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Lysinibacillus. All three Sporosarcina isolates were susceptible to antibiotics except for 

gentamicin, kanamycin, and penicillin.  
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Figure 2. MIC Distribution of Top 6 Genera of Gram-negative Bacteria 

Legend: 

The dot line on each figure represents the resistance breakpoint for E. coli.  

X-axis is MIC in g/ml. Y-axis is number of isolates. 
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Figure 3. MIC Distribution of Top 4 Genera of Gram-positive Bacteria 

Legend: 

The dot line on each figure represents the resistance breakpoint for S. aureus.  

X-axis is MIC in g/ml. Y-axis is number of isolates. 
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3.3 Bacteria diversity revealed by high-throughput 16S rRNA sequencing 

More than 30 phyla were present in every soil sample as revealed by 16S rRNA Sequencing. 

The top four phyla were the same as those identified in cultured soil bacteria, but the prevalence 

ranking was different. Proteobacteria were the most prevalent and identified in 37.32% of the 

reads, followed by Actinobacteria (19.45%), Firmicutes (12.28%), and Bacteroidetes (9.76%) 

(Figure 4a). Granulicella (2.78%), Rhodoplanes (2.78%), Flavobacterium (1.98%), Kaistobacter 

(1.85%), and Niastella (1.43%) were the top five genera detected (Figure 4b). Individual genera 

identified at very low percentages, when combined together, accounted for more than 65% of total 

genera. The 16S rRNA Sequencing failed to classify 8.32% of the reads to the phylum level and 

more than 24% to the genus level. Prevalence wise, most genera were detected in all samples, 

except for Chryseobacterium and Enterobacter, which were present in eight and four of 14 

samples, respectively (Figure 5). Prevalent genera varied from sample to sample. E03 was 

extremely high in Chryseobacterium, Enterobacter, Flavobacterium, and Pseudomonas, with 

reads ranging from ~12K to 28K. Granulicella were prevalent in E05, E63, and E65, as well as 

Rhodoplanes in E05, E38, and E65. 
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(a)                                                                             (b) 

 

Figure 4. Microbial Composition Determined by 16S rRNA Sequencing 

Legend: 

(a) Phylum distribution of soil bacteria by 16S rRNA Sequencing  

(b) Genus distribution of soil bacteria by 16S rRNA Sequencing 

Numbers shown in the pie chart were percentages of each phylum or genus in total identified 

bacteria/reads. 
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Figure 5. Bacterial Genus Distribution in 14 Soil Samples Revealed by 16S rRNA Sequencing  

Legend:  

The heat map was constructed by combining the top 8 most prevalent genera in each of all 14 

samples. For a particular sample represented by a column, the data included the top 8 genera in 

that sample as well as the less common genera that were prevalent in other samples. The color 

gradient in the scale represents the number of the reads for respective genera. X-axis shows 14 soil 

samples. Y-axis shows bacterial genera identified.  

Discussion 

Environmental reservoir of antibiotic resistance has been drawing increasing research attention 

because many clinically important antibiotic-resistant microorganisms and antibiotic resistance 

genes originated in the environment (Berendonk et al., 2015; Forsberg et al., 2012a). Much 

research has been conducted on wastewater from agricultural and urban use or manure-amended 

agricultural land (Berglund et al., 2015; Binh et al., 2008; Pei et al., 2006; Zhu et al., 2013b), 

where antibiotic-resistant microorganisms are expected to be at high levels. However, limited 

information is available in US agricultural environment with minimum anthropogenic disturbance. 
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The data collected in this study using an urban farm model suggest that agricultural soils receiving 

no wastewater irrigation or manure fertilization are also rich in antibiotic resistance.  

The bacterial phyla and genera identified in this study were typical of soil bacteria (Janssen 

2006). The discrepancy in microbial composition between the culturing method and 16S rRNA 

Sequencing was not surprising as 16S rRNA Sequencing target both culturable and non-culturable 

microorganisms. Also, because antibiotics were added in the media during bacteria isolation, the 

data revealed by the culturing method were more a reflection of possible soil antibiotic resistome 

profile than an overall microbial structure in soil as depicted by 16S rRNA Sequencing. This could 

also partially explain the predominance of Gram-negative bacteria in the cultured bacteria as the 

outer membrane of Gram-negative bacteria are believed to provide an extra layer of protection 

from antibiotic inhibition and thus contributing to generally more antibiotic resistance than Gram-

positive bacteria (Delcour 2009). Failure to classify 8.32% of bacteria at phylum level and 24.04% 

at genus level by 16S rRNA sequencing (Figure 4a and 4b) suggests that a large proportion of soil 

microorganisms still remain uncharacterized. Applying both the culturing and high-throughput 

16S rRNA sequencing methods in this research helped achieve a more comprehensive 

understanding of soil microbial structure.  

The predominance of Bacteroidetes and Proteobacteria identified by the culturing method was 

different from a Swiss report where the same four phyla were identified as in this study but 

Proteobacteria were the most prevalent and Bacteroidetes the least (Walsh and Duffy 2013). This 

might be due to differences in locations and soil samples studied. The soil bacteria recovered in 

this literature were from agricultural, urban, and pristine environments with a single sample tested 

from each site, which may have overlooked the spatial variation of the microorganisms. In fact, 

this was also the case for many environmental studies that investigated only a limited number of 
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samples (Chen et al., 2016; Popowska et al., 2012; Wang et al., 2014). The need to consider sample 

variation and bacterial diversity is supported by the data generated in the current research 

demonstrating inter-sample variation at genus and even phylum levels as well as heterogeneity of 

isolates within samples.  

The prevalence of antibiotic resistance phenotypes was higher than a previous study where soil 

bacteria recovered from manure- and non-manure-amended soils were resistant to streptomycin 

(42.8%), erythromycin (34.7%), and tetracycline (10.2%) (Popowska et al., 2012). As soil samples 

collected from the current study received no agricultural or human wastes, the high prevalence 

implies the extent of a natural pool of antibiotic resistance. However, the contribution of soil 

factors from previous industrial activities to maintaining antibiotic resistance deserves further 

investigation. It is also worth mentioning that there are no standard breakpoints for environmental 

microorganisms as for clinical isolates, making it a challenge in comparing data across studies. 

Some researchers have used a general 20 µg/ml as the resistance breakpoint in soil bacteria and 

took no consideration of antibiotic variation (D'Costa et al., 2006; Walsh and Duffy 2013). The 

current study used CLSI guidelines for E. coli and S. aureus, which addressed the antibiotic 

variation issue but only allowed the interpretation for those antibiotics that have resistance 

breakpoints. Since the implication of antibiotic resistance in clinical bacteria may not apply to 

bacteria of environmental origin, establishing “ecological breakpoints” or even standardized 

protocols in environmental investigations will be of great value for inter-study comparisons 

(Thanner et al., 2016). To achieve this goal, more data on environmental bacterial species and 

isolates are the key.  

Genus variation in antibiotic resistance may reflect differences of bacteria in indigenous 

antibiotic resistance, the tendency to acquire antibiotic resistance, or the environmental selection 
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on bacteria (Martinez 2009b), although it could also be related to the number variation of 

individual genus recovered at a given site. It was interesting to note that Chryseobacterium 

demonstrated very high rate of antibiotic resistance to most antibiotics but was mostly susceptible 

to ciprofloxacin and nalidixic acid. This suggests that antibiotic variation also exists, and it is 

important to explore the antibiotic resistance determinants for individual antibiotics as well as the 

potential of resistance dissemination. Identifying soil bacteria indicators towards individual 

antibiotics or antibiotic categories may be critical in monitoring specific antibiotic resistance in 

the environment (Berendonk et al., 2015). 

In conclusion, the study demonstrated that urban agricultural soil receiving no animal wastes 

or wastewater irrigation is rich in antibiotic-resistant bacteria. Future investigations are needed on 

the impact of previous industrial activities on soil antibiotic resistance as part of urban soil 

ecosystem. Isolation of soil bacteria together with high-throughput 16S rRNA sequencing on soil 

DNA provided more accurate information on microbial composition in soil than each method 

alone. The data added substantial information to the environmental database of antibiotic 

resistance. However, phenotypic determination of antibiotic resistance in bacterial isolates may 

miss the information associated with non-culturable microorganisms, which account for more than 

99% of total soil microbiota. Consequently, it is also important to investigate antibiotic resistance 

genes in soil DNA using culture-independent methods to get a comprehensive understanding of 

the extent of soil antibiotic resistome.   
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CHAPTER 2:  

QUANTIFICATION OF ANTIBIOTIC RESISTANCE GENES (ARGS) AND METAL 

RESISTANCE GENES (MRGS) IN URBAN AGRICULTURAL SOILS 

1. Introduction 

The vast majority of soil microorganisms are non-culturable, and less than 1% of soil 

microorganisms can be cultured in current lab settings (Demaneche et al., 2008; Schloss and 

Handelsman 2003). Due to this limitation, culturing methods may miss a large amount of 

information on antibiotic resistance genes associated with non-culturable microorganisms in the 

soil. Culture-independent tools, for example, PCR and metagenomics, are frequently used to 

capture antibiotic resistance information on non-culturable soil microorganisms. 

Soils are the host to diverse and abundant antibiotic resistance genes. Gene profiling has been 

used to understand environmental antibiotic resistome around the world.  Quantitative PCR was 

conducted on garden soils from residential areas in Western Australia (Knapp et al., 2017) and 

revealed the absolute abundance of tetracycline, β-lactam and sulphonamide resistance genes 

ranging from 0.09 to 0.37 genes/g soil. The gene abundance was similar to that commonly found 

in typical pristine environments as well as impacted sites. Another study identified multidrug and 

bacitracin resistance genes as the top two dominant gene groups from three US arable soil samples 

using metagenomics, despite lower gene abundance in soil compared to that in wastewater (Li et 

al., 2015a). High abundance of antibiotic resistance genes have also been reported from urban park 

soils with and without reclaimed water irrigation in China (Wang et al., 2014). By using a high-

throughput quantitative PCR approach, the research demonstrated aminoglycoside and β-lactam 

resistance genes as the two most dominant gene types. Metagenomic analysis conducted in both 

human impacted and minimally impacted environment in China also revealed high diversity of 
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antibiotic resistance genotypes to aminoglycosides, β-lactams, macrolides, and quinolones (Chen 

et al., 2016; Chen et al., 2013). 

There have been studies reporting the correlation between antibiotic resistance and metal or 

metal resistance in highly impacted areas, including biosolids and wastewater (Knapp et al., 2012; 

Su et al., 2015), lands receiving agricultural wastes (Li et al., 2015b; Zhu et al., 2013b; Ji et al., 

2012) etc. blaTEM, blaCTX, blaOXA, tetM, tetW, sul1, sul2, and sul3 showed significant positive 

correlation with one or multiple metals, including manganese, vanadium, copper, zinc, aluminium, 

and nickel (Knapp et al., 2017). A separate study of biogas plant residues, which are used as 

biofertilizers for crops cultivation, showed a strong positive correlation (p= 0.001) between overall 

antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) (Luo et al., 2017). Despite 

the previous findings, there is a scarcity of data on US soils, and more specifically on the soils 

used for urban agriculture. Moreover, negative correlation was also observed in some studies 

between metals and antibiotic resistance (Holzel et al., 2012; Knapp et al., 2011), suggesting 

variations in metals, antibiotic resistance types, and study sites. 

The aim of this Chapter was to determine the prevalence of antibiotic resistance genes (ARGs) 

in urban agricultural soil by metagenomics. As heavy metals are commonly found in urban soils 

and there is increasing evidence showing the correlation of heavy metals and antibiotic resistance, 

metal resistance genes were also included in soil metagenomics as an attempt to elucidate the 

linkage between heavy metals and antibiotic resistance at the molecular level.  

2. Materials and Methods 

2.1 Quantification of antibiotic resistance genes and metal resistance genes by metagenomics 

Metagenomic sequencing targeting common antibiotic and metal resistance genes was 

conducted on 21 of 41 soil samples collected in Chapter 1. Total metagenomic DNA was extracted 

using the Mo Bio PowerSoil DNA isolation Kit for Soil (Mo Bio, Carlsbad, CA). Sequencing 
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library was prepared using the NEBNext® Ultra™ DNA Library Prep Kit for Illumina, sequenced 

by the Illumina HiSeq platform (Paired-End 125bp, or PE125), and assembled using SPAdes 

v3.7.1 (Bankevich et al., 2012). Open reading frames (ORFs) of antibiotic and metal resistance 

genes were identified by BLAST searches using previously identified common genes as query 

sequences with a cutoff E-value of 10-4. The genes selected were commonly studied in 

environmental research (Popowska et al., 2012; Yan et al., 2017; Unc et al., 2012). The categories 

(genes) of antibiotic resistance were aminoglycosides (aac, strA and strB), β-lcatams (blaCMY-2, 

blaTEM-1, blaSHV-1, blaCTX-M1 and blaOXA-2), macrolides (emrB, ermC, ermX and ermE), quinolones 

(aac6-ib-cr4, oqxB, qepA, qnrA, qnrB, qnrC, qnrD and qnrS), tetracyclines (tetA, tetB, tetC, tetD, 

tetH, tetM, tetO, tetT and tetW), transposons (Tn916, Tn1549, and Tn5397). Metal resistance genes 

included genes encoding resistance to arsenic (arsA, arsB, arsC, and arsR), cadmium (cad), copper 

(pcoA, czc), lead (pbr), mercury (mer), and zinc (zntA and zraR).  

2.2 Statistical analysis 

The correlations between antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) 

were analyzed by Pearson’s bivariate correlation using SPSS v. 21.0 (IBM SPSS, Chicago, IL). 

Independent t-test was used to determine the difference in gene abundance between antibiotic 

resistance genes and metal resistance genes. A p-value of less than 0.05 was considered statistically 

significant. 

3. Results 

3.1 Prevalence of antibiotic resistance genes and metal resistance genes in soil 

A total of 21 (100%), 20 (95%), and 18 (85.7%) samples contained resistance genes to 

quinolones, β-lactams, and tetracyclines, respectively. The number of ORFs of antibiotic 

resistance genes ranged from 2 in sample E53 to 36 in sample E65 (Figure 6a). Quinolone, β-
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lactam, and tetracycline resistance genes were among the highest percentages of ORFs identified, 

accounting for 37.2%, 36.6%, and 18.1%, respectively (Figure 6b). β-lactam resistance genes were 

positively correlated with quinolone resistance genes (p < 0.05), and so were β-lactam resistance 

genes with tetracycline resistance genes (p < 0.05). qepA and tetA were the most abundant 

quinolone and tetracycline resistance genes, respectively, and both encoded efflux pumps. All five 

β-lactam resistance genes (blaCMY-2, blaTEM-1, blaSHV-1, blaCTX-M1 and blaOXA-2) were detected and 

in similar abundance. Less than 1% of the ORFs were identified as transposons. Tn5397, Tn916 

and Tn1549 were found in three individual samples.  
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(a) 

    

(b)  

 

Figure 6. Illumina Sequencing Revealed Diverse Antibiotic Resistance Genes in Urban 

Agricultural Soil 

Legend:  

(a) Numbers of open reading frames (ORFs) identified in 21 soil samples 

(b) Compositions of individual groups of antibiotic resistance genes as well as   

transposons 

Metal resistance genes were significantly more abundant than antibiotic resistance genes 

(p < 0.01, t-test) as much more metal resistance gene ORFs were observed ranging from 86 in E09 
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to 198 in E59 (Figure 7a). The most abundant metal resistance genes were for zinc (72.9%), 

followed by arsenic (17.4%), copper (8.1%), lead (1.4%), mercury (0.2%), and cadmium (0.07%) 

(Figure 7b). zraA (zincr), zntA (zincr), arsR (arsenicr), and czc (copperr) were among the most 

abundant ORFs.  

     (a)  

 

(b) 

 

Figure 7. Illumina Sequencing Revealed Diverse Metal Resistance Renes in Urban 

Agricultural Soil 

Legend:  

(a) Numbers of open reading frames (ORFs) identified in 21 soil samples 

(b) Compositions of individual groups of metal resistance genes 
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3.2 Correlation between antibiotic resistance genes and metal resistance genes in soil  

Total antibiotic resistance genes showed a significant positive correlation with total metal 

resistance genes (r = 0.707, p < 0.001) (Figure 8). Positive correlation was also identified between 

individual metal resistance genes and antibiotic resistance genes (p < 0.05), though with lower 

correlation coefficients (data not shown). Tetracycline, β-lactam, and quinolone resistance genes 

were all positively correlated with zinc, arsenic, and copper resistance genes. Tetracycline 

resistance genes were also positively correlated with mercury resistance genes the same way as 

aminoglycoside resistance genes with zinc and arsenic resistance genes. No correlation was 

identified between lead or cadmium resistance genes and antibiotic resistance genes.   

 

Figure 8. Correlation between Total Antibiotic Resistance Genes and Total Metal Resistance 

Genes 

4. Discussion 

The predominance of quinolone, β-lactam, and tetracycline resistance genes in both the 

prevalence and abundance of ORF reads suggests that urban agricultural soils are a reservoir of 

common antibiotic resistance genes. These results also correlated well with the high prevalence of 

corresponding antibiotic resistance phenotypes observed in the cultured microorganisms in 
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Chapter 1. However, the common aminoglycoside resistance phenotypes were inconsistent with 

the overall gene prevalence as identified by metagenomics. It should be noted that soil 

metagenomics target both culturable and non-culturable microorganisms, which reveal a more 

comprehensive profile of naturally-occurring antibiotic resistance genes that do not necessarily 

confer resistance phenotypes by the clinically-defined standard.  

All quinolone resistance genes tested in this study were plasmid-mediated quinolone 

resistance (PMQR) genes (Yan et al., 2017). While comparing to quinolone resistance caused by 

gene mutations in the chromosome, the level of resistance due to PMQR alone is usually lower. 

However, PMQR can substantially improve the occurrence of chromosomal mutations, leading to 

higher levels of resistance (Strahilevitz et al., 2009). More importantly, PMQR can readily spread 

quinolone resistance through horizontal gene transfer (HGT). qepA encodes plasmid-mediated 

quinolone efflux pump. Its abundance in this study was the main contributor to the predominance 

of quinolone resistance genes. The prevalence of qepA in this study as well as in agricultural soil 

and aquatic environment (Li et al., 2012; Yan et al., 2017) suggests the ubiquitousness of the gene 

and the need to determine the gene prevalence in soil bacteria. Another predominant efflux gene 

identified in the current study was tetA, which encodes tetracycline efflux protein and has been 

detected from both soil DNA (Wu et al., 2010) and soil bacteria (Srinivasan et al., 2008). Taken 

together, the data suggest the potential importance of efflux pumps in conferring antibiotic 

resistance in the environment (Chen et al., 2013; Chen et al., 2016; Walsh and Duffy 2013) and 

the need to investigate the specificity of these efflux pumps, which may shed light on the 

underlying mechanisms of the widespread occurrence of antibiotic resistance in the environment. 

The positive correlation between β-lactam resistance genes and PMQR genes as well as between 

β-lactam resistance and tetracycline resistance genes suggest possible co-existence and co-
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selection of these antibiotic resistance genes, although further investigation including a more 

comprehensive list of genes and additional study sites will be necessary to test this hypothesis.  

The positive correlation between antibiotic resistance genes and metal resistance genes 

provides indirect evidence of possible co-selection of antibiotic resistance by heavy metals. The 

data call for further investigation on the impact of anthropogenic pollution of metals and 

alternative selective pressure from non-antibiotics at both phenotypic and molecular levels. 

Taken together, this Chapter provided critical information complementary to what was 

observed in Chapter 1 on antibiotic resistance phenotypes in soil microorganisms. Phenotypic 

determination combined with soil metagenomics proved to be a key strategy to study the nature 

and extent of antibiotic resistance in the environment. 
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Chapter 3: Soil Contaminants, Microbial Profile, and Antibiotic Resistance in 

Urban Agricultural Soil and Vegetables 

1. Introduction 

Antibiotic-resistant bacteria in agricultural soil have the potential to contaminate vegetables 

grown in the field. There have been few studies on vegetables contaminated with antibiotic 

resistance (Holvoet et al., 2013; Ruimy et al., 2010). Holvoet et al. investigated lettuce as a vector 

and irrigation water and soil as a reservoir of antibiotic resistant E. coli. A total of 473 E. coli were 

isolated from 738 samples. Isolates were tested for 14 antibiotics and found that 11.4% of the 

isolates were resistant to at least one antibiotic with highest 7% resistance to ampicillin. Higher 

resistance rates were observed in the isolates recovered from the vegetables than the soil or 

irrigation water samples (Holvoet et al., 2013). In a separate study 399 vegetables and fruits were 

analyzed and found to be highly contaminated with antibiotic resistant Gram-negative bacteria of 

soil origin. Ninty-five percent of 321 resistant bacteria belonged to Acinetobactrer, 

Stenotrophomonas, and Rahnella. Class A extended –spectrum beta-lactamase (ESBL) resistance 

was observed in 51 isolates, isolated from 13% of the tested samples (Ruimy et al., 2010).  

Antibiotics in soil can serve as selective pressure for antibiotic resistance and can also facilitate 

the transfer of ARGs to human pathogens and other microorganisms through horizontal gene 

transfer (HGT) (Kruse and Sørum 1994; Pruden et al., 2006b). In addition, heavy metals are also 

potential alternative selective pressure for antibiotic resistance in agricultural soil (Stepanauskas 

et al., 2005). A wide variety of human-driven activities are responsible for heavy metal 

contamination in soils and water, for example, mining, processing, and smelting (Feng et al., 2010; 

Miclean et al., 2009; Taylor et al., 2010).  
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The aim of this Chapter was to investigate the impact of soil contaminants such as antibiotics 

and heavy metals on microbial profile and antibiotic resistance in urban agricultural soil and 

vegetables. The potential of antibiotic resistance gene transfer was also explored.  

2. Materials and Methods  

2.1 Sample collection 

A total of 15 soil samples (5 each from E, G and O gardens) and 45 vegetable samples (21 from 

E, 5 from G, and 19 from O) were collected from three urban gardens (E, G and O) located in the 

metro Detroit area. Gardens E and G were located closer to the city center compared to garden O 

that was about 25 miles north of Detroit. Approximately 1 kg of each sample was collected and 

put into sterilized zip-lock bag. Cooler filled with ice was used to store and transport samples.  

2.2 Isolation and identification of antibiotic-resistant soil bacteria 

Bacteria were isolated and identified as described in Section 2.2 of Chapter 1.  

2.3 Antibiotic Susceptibility Testing  

Antibiotic resistance phenotypes were determined as described in Section 2.3 of Chapter 

1.  

2.4 Determination of soil microbial composition by high-throughput 16S rRNA sequencing 

Soil microbial composition was determined as described in Section of 2.4 of Chapter 1.  

2.5 Detection of Antibiotics and heavy metals  

Six antibiotics that have been detected in the environment were analyzed on five soil 

samples collected from four corners and the center of the garden. The antibiotics included 

azithromycin (AZI), ciprofloxacin (CIP), erythromycin (ERY), oxytetracycline (OTC), 

sulfamethoxazole (SMZ), and trimethoprim (TRI) (Berglund 2015; Wellington et al., 2013). The 

QuEChERS extraction method was used for antibiotic extraction according to AOAC Official 



www.manaraa.com

45 
 

 
 

Method (2007.01) (Lehotay 2007). All compounds were determined simultaneously on a 

ACQUITY UPLC HSS T3 (100Å, 1.8 µm, 2.1 mm × 50 mm, Waters) column using electrospray 

ionization (ESI) in positive-ion mode by multiple reactions monitoring (MRM). The mobile phase 

composition was (A) water with 0.1% formic acid and (B) methanol. The gradient began at 10% 

of B with a flow of 0.5 mL/min. The percentage of B was linearly increased to 28% in 3.0 min, 

43% in 1.5 min, and 100% in 0.5 min, and held for 2.0 min, followed by a re-equilibration time of 

1.9 min (total running time = 9.0 min).  The column temperature was maintained at 40 (±1) °C. 

This analytical method was validated by linearity, limit of quantification (LOQ), accuracy, 

precision, and recovery tests. 

The concentration of four heavy metals Lead (Pb), Zinc (Zn), Strontium (Sr) and Rubidium 

(Rb) were determined in 15 soil samples (5 from each garden) by X-ray fluorescence (XRF). For 

XRF analysis, soil samples were sieved at 250 µm particle sizes. A hand-held Thermo Scientific 

XLTj-793 NITON energy-dispersive XRF analyzer was used for analysis. Each soil sample was 

analyzed three times to reduce the error, and the data for each sample were stored in a dedicated 

library. 

2.6 Conjugation experiment 

Conjugation experiment was designed to demonstrate the horizontal transfer of tetracycline 

resistance in antibiotic-resistant bacteria. Gram-negative bacteria (tetracycliner, kanamycins) and 

Gram-positive bacteria (tetracycliner, rifampicins) were selected as donors for conjugation 

experiment. All donor strains were tetM positive as identified by PCR. E. coli DH5α (ampr, kanr) 

and Enterococcus faecalis JH2-2 (rifr
 ,fusr) were used as recipient strains for Gram-negative and 

Gram-positive isolates, respectively. Conjugation was performed by the filter mating method 

(Agersø et al., 2006) with modifications. Briefly, overnight cultures of the donor strains were 
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grown in Brain Heart Infusion (BHI) broth (Difco, Sparks, MD) containing tetracycline (15 μg/ml). 

The recipients E. coli DH5α and Enterococcus faecalis JH2-2 were grown in BHI broth containing 

50 µg/ml of kanamycin and rifampicin, respectively. The mixture was then placed on a 0.45-μm-

pore-size filter and incubated on BHI agar plates (Difco) at 30°C for two days. The filter was 

washed and vortex-mixed in BHI broth. For Gram-negative bacteria the mating mixture was spread 

onto BHI agar containing tetracycline (15 μg/mL) and kanamycin (50 µg/ml), and for Gram-

positive bacteria the mating mixture was spread onto BHI agar containing tetracycline (15 μg/mL) 

and rifampicin (50 µg/ml). Transconjugants were confirmed by tetM PCR. 

2.7 Whole-genome sequencing 

A total of 24 isolates, 8 from each garden, were selected for whole-genome sequencing. 

Genomic DNA was extracted from pelleted bacterial cells using a commercial DNeasy PowerSoil 

Kit (QIAGEN, Valencia, CA). The quality and quantity of genomic DNA was determined with a 

NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) and a Qubit 3.0 

fluorometer (Thermo Fisher Scientific, Wilmington, DE), respectively. The paired-end libraries 

were prepared with a Nextera DNA Flex Library Prep Kit (Illumina, San Diego, CA) together with 

Nextera DNA CD Indexes (Illumina, San Diego, CA) for tagmentation of the input DNA (300-

400ng) and addition of the indexing primers by PCR amplification, according to the manufacturer's 

protocol. 

The individual libraries (5 μl each) were pooled together. The quantity and quality of the 

single pooled library was determined with a Qubit 3.0 fluorometer (Thermo Fisher Scientific, 

Wilmington, DE) and a 2100 Bioanalyzer (Agilent, Santa Clara, CA). The pooled library (15.9 

ng/μl, average size 586 bp) was diluted to 4 nM with resuspension buffer included in Nextera DNA 

Flex Library Prep Kit (Illumina, San Diego, CA), and then denatured with freshly prepared 0.2 N 
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NaOH, according to the Denature and Dilute Libraries Guide (Illumina, Document # 15039740). 

A denatured low-concentration spike-in (1%) of PhiX control v3 was combined with the denatured 

library (diluted to 12 pM with prechilled HT1) and loaded into a MiSeq reagent cartridge version 

3 (Illumina, San Diego, CA). Sequencing by synthesis of the paired-end 300 bp reads was 

conducted using an on-site MiSeq platform (Illumina, San Diego, CA).  

FastQC.0.11.6 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to 

analyze the quality of read data. Trimmomatic.0.36 

(www.usadellab.org/cms/?page=trimmomatic) (Bolger et al., 2014). was employed to remove the 

adaptors and low quality bases from the reads, using the following options: LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. The trimmed reads were assembled using 

the de novo assembler SPAdes.3.11.1 (http://bioinf.spbau.ru/spades) (Bankevich et al., 2012), 

using default parameters with a broad range of k-mer values (from 21 to 127). Several in-house 

shell scripts were written to automate the analyses for multiples samples (available upon request 

from BI). The assembled contigs for each genome were used as queries against the Comprehensive 

Antibiotic Resistance Database (CARD, http://arpcard.mcmaster.ca/) to identify antibiotic 

resistance genes (McArthur et al., 2013). 

2.8 Statistical analysis 

The correlations between antibiotic resistance phenotypes and antibiotics, as well as between 

antibiotic resistance phenotypes and metal concentrations were analyzed by using SPSS v. 21.0 

(IBM SPSS, Chicago, IL). Antibiotic resistance phenotypes between soil and vegetables 

3. Results 

3.1 Isolation and identification of bacteria from soil and vegetable  

http://www.usadellab.org/cms/?page=trimmomatic
http://bioinf.spbau.ru/spades
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A total of 226 bacteria were isolated, including 54 from 15 soil samples (13 Gram-positive and 41 

Gram-negative) and 172 from 45 vegetable samples (33 Gram-positive and 139 Gram-negative). 

Overall Gram-negative bacteria (n=180) were predominant over Gram-positive bacteria (n=46) 

(Table 1). Bacteria isolated from vegetables belonged to four phyla, Proteobacteria (66.28%), 

Bacteroidetes (18.60%), Firmicutes (10.47%), and Actinobacteria (4.65%) (Figure 9a), and 

belonged to 29 genera (Figure 9c).  The major bacteria genera identified were Stenotrophomonas 

(n=26, 15.12%), Chryseobacterium (n=21, 12.21%), Pseudomonas (n=19, 11.05%), Rhizobium 

(n=10, 5.81%), and Lysinibacillus (n=9, 5.23%). The remaining genera combined comprised 

50.58% (n= 87) of total isolates (Figure 9b). The same four phyla were identified in bacteria 

isolated from soil, including Proteobacteria (62.96%), Firmicutes (16.67%), Bacteroidetes 

(14.81%), and Actinobacteria (5.56%) (Figure 10a),  and belonged to 21 genera (Figure 10c).  The 

major bacteria genera identified were Stenotrophomonas (n=9, 16.67%), Lysinibacillus (n=7, 

12.96%), Pseudomonas (n=6, 11.11%), Lysobacter (n=6, 11.11%), and Chryseobacterium (n=4, 

7.41%).  The remaining genera combined comprised 40.74% (n= 22) of the identified bacteria 

(Figure 10b).  

Table 1. Gram characteristics of isolated bacteria from soil and vegetables 

Sample Gram-positive Gram-negative Total 

Soil 13 41 54 

Vegetables 33 139 172 

Total 46 180 226 
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(a)                                                                                                  (b) 

 

(c) 

 

Figure 9. Microbial Composition in Vegetable Samples Determined by Bacteria Identification  

Legend: 

(a) Phylum distribution in vegetable bacteria (n=172) 

(b) Genus distribution in vegetable bacteria (n=172) 

(c) Genus composition including top 5 genera and others in vegetable bacteria (n=172) 
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Numbers shown in the pie chart were percentages of each phylum or genus in total identified 

bacteria in vegetables. 

Numbers shown on top of the bars were number of the isolates identified for corresponding 

genus.  

Dark green bars represent the “Others” category of the figure 9b. 

(a)                                                                                (b) 

 

(c) 

 

Figure 10. Microbial Composition in Soil Samples Determined by Bacteria Identification  

Legend: 

(a) Phylum distribution in Soil bacteria (n=54) 

(b) Genus distribution in Soil bacteria (n=54)   

(c) Genus composition including top 5 genera and others in Soil bacteria (n=54)  
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Numbers shown in the pie chart were percentages of each phylum or genus in total identified 

bacteria in soil. 

Numbers shown on top of the bars were number of the isolates identified for corresponding 

genus.  

Dark orange bars represent the “Others” category of the figure 10b. 

3.2 Antibiotic resistance phenotypes of soil and vegetable bacteria  

For Gram-negative bacteria the MIC data were interpreted based on the available resistance 

breakpoints of E. coli. Fourteen antibiotics were tested for Gram-negative bacteria. Resistance 

breakpoints were available for nine antibiotics. Similarly, the MIC data of Gram-positive bacteria 

were interpreted based on the available resistance breakpoints of S. aureus. A total of sixteen 

antibiotics were tested for Gram-positive bacteria and resistance breakpoints were available for 

nine antibiotics. 

Gram-negative bacteria isolated from vegetables showed highest resistance to cefoxitin 

(85.61%), followed by ampicillin (82.01%), amoxicillin/clavulanic acid (69.06%), 

chloramphenicol (64.03%), ceftriaxone (57.55%), gentamicin (46.04%), nalidixic acid (35.97%), 

tetracycline (35.97%), and ciprofloxacin (34.53%). Gram-negative bacteria isolated from soil 

showed highest resistance to ampicillin (95.12%), followed by cefoxitin (82.93%), ceftriaxone 

(70.73%), amoxicillin/clavulanic acid (63.41%), chloramphenicol (58.54%), nalidixic acid 

(58.54%), ciprofloxacin (46.34%), gentamicin (43.90%), and tetracycline (24.39%) (Figure 11). 

We have observed a variation in the percent of bacteria resistant to tested antibiotics 

between soil Gram-negative bacteria and vegetable Gram-negative bacteria. For some antibiotics 

soil bacteria showed higher percentage than vegetable bacteria, and vice versa. Higher percentage 

of bacteria was observed for ampicillin (95.12%, n=39), ceftriaxone (70.73%, n=29), nalidixic acid 

(58.54%, n=24), and ciprofloxacin (46.34%, n=19) resistance in soil bacteria than vegetable 

bacteria, 82.01% (n=114), 57.55% (n=80), 35.97% (n=50), and 34.53% (n=48), respectively. In 
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vegetables, Gram-negative bacteria resistant to cefoxitin (85.61%, n=119), amoxicillin/clavulanic 

acid (69.06%, n=96), chloramphenicol (64.03%, n=89), and tetracycline (35.97%, n=50) were 

more abundant than the soil samples (Figure 11). 

 

Figure 11. Prevalence of Antibiotic Resistance in Gram-negative Bacteria  

Legend 

Orange bars: Antibiotic resistance prevalence in Gram-negative bacteria isolated from soil 

(n=41) 

Green bars: Antibiotic resistance prevalence in Gram-negative bacteria isolated from vegetables 

(n=139) 

All Gram-positive bacteria (100%) recovered from vegetables were resistant to penicillin, 

gentamicin, and kanamycin. They were also resistant to erythromycin (30.30%), ciprofloxacin 

(24.24%), quinopristine/dalphopristine (12.12%), tetracycline (12.12%), chloramphenicol 

(6.06%) and vancomycin (6.06%). All Gram-positive bacteria (100%) isolated from soil were 

resistant to three antibiotics- penicillin, gentamicin and kanamycin. They were also resistant to 
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erythromycin (38.46%), ciprofloxacin (30.77%), quinopristine/dalphopristine (23.08%), and 

chloramphenicol (15.38%) (Figure 12). 

Difference in percent resistant bacteria for tested antibiotics was also observed in Gram-

positive bacteria recovered from soil and vegetables. No variation was observed between soil and 

vegetable bacteria for penicillin, gentamicin, and kanamycin as all of the isolates (100%) were 

resistant. For remaining six antibiotics, higher percent of soil bacteria were resistant to four 

antibiotics; erythromycin (38.46%, n=5), ciprofloxacin (30.77%, n=4), quinopristin/dalphopristin 

(23.08%, n=3), and chloramphenicol (15.38%, 2), than vegetable bacteria. Interestingly, 

tetracycline (12.12%, n=4) and vancomycin (6.06%, n=2) were detected only in vegetables, not in 

any soil samples.  

For those antibiotics that interpretation breakpoints were unavailable for E. coli or S. 

aureus, most Gram-negative bacteria fell under the highest range of MIC to azithromycin, 

ceftiofur, streptomycin, sulfisoxazole, and trimethoprim/sulfamethoxazole, so did Gram-positive 

bacteria to daptomycin, lincomycin, linezolid, nitrofurantoin, streptomycin, tigecycline and tylosin 

tartrate.  
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Figure 12. Prevalence of Antibiotic Resistance in Gram-positive Bacteria  

Legend 

Orange bars: Antibiotic resistance prevalence in Gram-positive bacteria isolated from soil (n=13) 

Green bars: Antibiotic resistance prevalence in Gram-positive bacteria isolated from vegetables 

(n=33) 

3.3 Bacteria diversity in soil revealed by high-throughput 16S rRNA sequencing 

16S rRNA sequencing identified numerous phyla in each soil sample. On average, each 

soil sample in Garden E harbored more than 30 phyla. Proteobacteria were the most prevalent 

phylum and identified in 35.94% of the reads, followed by Actinobacteria (19.41%), Firmicutes 

(14.44%), Bacteroidetes (7.58%), and Acidobacteria (6.32%). 16S rRNA sequencing failed to 

classify 9.03% of the reads to the phylum level (Figure 13a). The top five phyla identified in 

Garden G were comprised 79.92% of the total reads,with Proteobacteria being the most prevalent 

phylum and identified in 38.11% of the reads, followed by Actinobacteria (16.28%), Bacteroidetes 

(10.58%), Firmicutes (8.75%), and Acidobacteria (6.20%). Over 9% of the reads were unclassified 

at phylum level. Other than top five phylum the remaining phylum accounted for 11.03% of the 
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reads (Figure 13b). Top five phyla identified in Garden O were Proteobacteria (36.25%), 

Actinobacteria (18.23%), Bacteroidetes (10.05%), Acidobacteria (8.42%), and Firmicutes 

(8.24%). The top five phyla were the same as those identified in Gardens E and G, but the 

prevalence order was different. In Garden O, the fourth and fifth ranks were occupied by 

Acidobacteria, and Firmicutes, but in the garden G, the same ranks were occupied by Firmicutes 

and Acidobacteria, respectively. The percentage of unclassified reads at phylum level in the garden 

O was 10.41%, which was higher than garden G (9.05%) and garden E (8.32%) (Figure 13c)
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(a) 

 

(b) 

 

 

(c) 

 

 

Figure 13. Microbial Composition Determined at Phylum Level by 16S rRNA sequencing 

Legend: 

(a) Phylum distribution of soil bacteria by 16S rRNA sequencing in E garden 

(b) Phylum distribution of soil bacteria by 16S rRNA sequencing in G garden 

(c) Phylum distribution of soil bacteria by 16S rRNA sequencing in O garden 
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Numbers shown in the pie chart were percentages of each phylum in total identified reads. 

3.4 Antibiotic detection 

A total of six antibiotics-azithromcin, ciprofloxacin, erythromycin, oxytetracycline, 

sulfamethoxazole, and trimethoprim were tested in soil and vegetable samples. Except 

trimethoprim, all other five antibiotics were detected both in soil and vegetable samples of three 

gardens. Trimethoprim was detected only in soil of the garden G at a concentration of 2.66 µg/kg. 

Azithromycin was detected in the soil of garden O at a concentration of 33.89 µg/kg, which is 

marginally higher than the concentration of the vegetable of garden E (33.39 µg/kg). Ciprofloxacin 

and erythromycin concentration was higher in vegetables than soils. Ciprofloxacin was detected 

in vegetables of two gardens, garden E (34.55 µg/kg) and Garden O (19.46 µg/kg), but detected in 

only soil of O garden (31.51 µg/kg). Highest 13.87 µg/kg of erythromycin was detected in 

vegetables compared to 5.63 µg/kg in soils. In soils, oxytetracycline concentration ranges from 

30.95 to 32. 26 µg/kg, whereas in vegetables the range was 14.12 to 41.12 µg/kg. Not much 

variation was observed in sulfamethoxazole concentration between soils and vegetables (Table 2). 

Table 2. Concentrations (µg/kg) of Antibiotics Detected in Soil and Vegetables 

 

LOQ = Limit of Quantification 

3.5 Occurrence of heavy metals in soil 

Antibiotics 
Soil (µg/kg) Vegetable (µg/kg) 

Garden E Garden G Garden O Garden E Garden G Garden O 

Azithromycin < LOQ < LOQ 33.89 33.39 < LOQ 25.31 

Ciprofloxacin < LOQ < LOQ 31.51 34.55 < LOQ 19.46 

Erythromycin 5.39 5.63 3.11 6.48 3.02 13.87 

Oxytetracycline 30.95 31.43 32.26 41.12 14.12 22.83 

Sulfamethoxazole 5.34 5.63 3.11 6.32 2.71 4.77 

Trimethoprim < LOQ 2.66 < LOQ < LOQ < LOQ < LOQ 
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In this study four heavy metals, namely lead (Pb), zinc (Zn), strontium (Sr), and Rubidium 

(Rb) were tested and detected in the soils of all three gardens. The lead concentration in O garden 

(40.99 ± 19.44 ppb) was low compared to G (133.38 ± 64.03 ppb) and E (145.19 ± 9.11 ppb) 

gardens. Zinc concentration varies from 141.09 ± 69.57 ppb in the O garden to 192.11 ± 24.28 ppb 

in the E garden. Zinc concentration in E garden superseded both G and O gardens. Overall, G 

garden had high concentration of strontium and rubidium over E and O gardens. (Table 3).  Lead 

concentration was significantly different between gardens with a p-value of 0.008. No significant 

difference was observed for zinc, strontium, and rubidium concentrations between gardens (Table 

4).  

In summary, the concentration of three out of four metals tested in this study were low in 

the garden O compared to other two gardens, E and G. Only rubidium concentration was slightly 

higher than the garden E, but was lower than the garden G. 

Table 3. Average Concentration (ppb) of Heavy Metals Detected in Soil and Vegetables in All 

Three Gardens 

 Gardens 

Element E G O 

 Mean (± SD) ppb Mean (± SD) ppb Mean (± SD) ppb 

Lead (Pb) 145.19 (± 9.11) 133.38 (± 64.03) 40.99 (± 19.44) 

Zinc (Zn) 192.11 (± 24.28) 189.17 (± 66.79) 141.09 (± 69.57) 

Strontium (Sr) 129.91 (± 7.75) 131.37 (± 12.17) 126.64 (± 7.48) 

Rubidium (Rb) 46.37 (± 1.87) 66.18 (± 4.41) 49.72 (± 9.81) 
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Table 4. ANOVA-Analysis to Determine Differences in Concentrations of the Heavy Metals 

Between and within Gardens  

Metals Difference Significance (p-value) 

Lead (Pb) Between Gardens 

Within Gardens 

 

0.008 

--- 

Zinc (Zn) Between Gardens 

Within Gardens 

 

0.412 

--- 

Strontium (Sr) Between Gardens 

Within Gardens 

 

0.741 

--- 

Rubidium (Rb) Between Gardens 

Within Gardens 

0.004 

--- 

*ANOVA (Analysis of Variance) 

3.6 Correlation between antibiotic resistance and antibiotics and metals 

Correlation between different categories of antibiotic resistance (aminoglycosides, beta-

lactam, tetracycline, and quinolones) and antibiotic concentrations (sulfamethoxazole, 

oxytetracycline, erythromycin, and ciprofloxacin) were tested. Beta-lactam resistance was 

positively correlated with ciprofloxacin concentration (p = 0.026). Beta-lactam resistance was also 

positively correlated with tetracycline resistance (p = 0.013), and quinolone resistance (p = 0.036) 

(Table 5). No correlation was observed between antibiotic resistance and metal concentration. The 

only positive relationship was observed between lead concentration and zinc concentration (p = 

0.003) (Table 6). 



www.manaraa.com

60 
 

 
 

Table 5. Correlation between Antibiotic Resistance and Antibiotic concentrations 

  Amino

glycosi

de 

Beta-

lacta

m 

Tetr

acycl

ine 

Qui

nolo

nes 

Total 

Antibi

otic 

Resist

ance 

Sulf

ame

thox

azol

e 

Oxyt

etrac

yclin

e 

Eryt

hro

myci

n 

Cip

rofl

oxa

cin 

Aminoglycoside Pearson 

Correlation 

1 0.318 0.790 0.632 0.737 0.110 0.316 -0.116 -0.043 

 Sig. (2-
tailed) 

 

 0.313 0.002 0.028 0.006 0.733 0.317 0.719 0.895 

Beta-lactam Pearson 
Correlation 

0.318 1 0.690 0.607 0.770 -0.202 0.098 -0.277 0.637 

 Sig. (2-

tailed) 
 

0.313  0.013 0.036 0.003 0.530 0.762 0.384 0.026 

Tetracycline Pearson 

Correlation 

0.790 0.690 1 0.761 0.899 0.047 0.135 -0.028 0.372 

 Sig. (2-

tailed) 

 

0.002 0.013  0.004 0.000 0.884 0.676 0.932 0.234 

Quinolones Pearson 

Correlation 

0.632 0.607 0.761 1 0.945 -0.242 0.140 -0.273 0.409 

 Sig. (2-
tailed) 

 

0.028 0.036 0.004  0.000 0.450 0.665 0.390 0.186 

Total Antibiotic 

Resistance 

Pearson 
Correlation 

0.737 0.770 0.899 0.945 1 -0.163 0.185 -0.257 0.445 

 Sig. (2-

tailed) 

 

0.006 0.003 0.000 0.000  0.613 0.564 0.421 0.147 

Sulfamethoxazole Pearson 

Correlation 

0.110 -0.202 0.047 -0.242 -0.163 1 -0.603 0.091 -0.525 

 Sig. (2-

tailed) 

 

0.733 0.530 0.884 0.450 0.613  0.038 0.777 0.079 

Oxytetracycline Pearson 
Correlation 

0.316 0.098 0.135 0.140 0.185 -0.603 1 -0.478 0.282 

 Sig. (2-

tailed) 
 

0.317 0.762 0.676 0.665 0.564 0.038  0.116 0.375 

Erythromycin Pearson 

Correlation 

-0.116 -0.277 -0.028 -0.273 -0.257 0.091 -0.478 1 -0.065 

 Sig. (2-

tailed) 

 

0.719 0.384 0.932 0.390 0.421 0.777 0.116  0.841 

Ciprofloxacin Pearson 

Correlation 

-0.043 0.637 0.372 0.409 0.445 -0.525 0.282 -0.065 1 

 Sig. (2-
tailed) 

0.895 0.026 0.234 0.186 0.147 0.079 0.375 0.841  

*Bold numbers indicate significance at p < 0.05 
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Table 6. Correlation between Antibiotic Resistance and Metal Concentrations 

  Ami

nogl

ycosi

de 

Beta-

lacta

m 

Tetr

acycl

ine 

Quin

olone

s 

Total 

Antibi

otic 

Resist

ance 

Sr Rb Pb Zn 

Aminoglycoside Pearson 

Correlation 

1 0.318 0.790 0.632 0.737 0.161 -0.088 -0.019 0.216 

 Sig. (2-tailed) 
 

 0.313 0.002 0.028 0.006 0.617 0.785 0.952 0.500 

Beta-lactam Pearson 

Correlation 

0.318 1 0.690 0.607 0.770 0.291 -0.004 -0.407 -0.129 

 Sig. (2-tailed) 

 

0.313  0.013 0.036 0.003 0.359 0.990 0.189 0.688 

Tetracycline Pearson 
Correlation 

0.790 0.690 1 0.761 0.899 0.211 0.002 -0.104 0.179 

 Sig. (2-tailed) 

 

0.002 0.013  0.004 0.000 0.509 0.994 0.748 0.578 

Quinolones Pearson 

Correlation 

0.632 0.607 0.761 1 0.945 -

0.072 

-0.157 -0.152 0.353 

 Sig. (2-tailed) 
 

0.028 0.036 0.004  0.000 0.825 0.625 0.636 0.261 

Total Antibiotic 

Resistance 

Pearson 

Correlation 

0.737 0.770 0.899 0.945 1 0.102 -0.105 -0.217 0.223 

 Sig. (2-tailed) 
 

0.006 0.003 0.000 0.000  0.752 0.745 0.497 0.487 

Sr Pearson 

Correlation 

0.161 0.291 0.211 -0.72 0.102 1 0.133 -0.127 -0.106 

 Sig. (2-tailed) 

 

0.617 0.359 0.509 0.825 0.752  0.680 0.693 0.742 

Rb Pearson 
Correlation 

-0.088 -0.004 0.002 -0.157 -0.105 0.133 1 0.246 0.000 

 Sig. (2-tailed) 

 

0.785 0.990 0.994 0.625 0.645 0.680  0.441 0.999 

Pb Pearson 

Correlation 

-0.019 -0.407 -0.104 -0.152 -0.217 -

0.127 

0.246 1 0.770 

 Sig. (2-tailed) 
 

0.952 0.189 0.748 0.636 0.497 0.693 0.441  0.003 

Zn Pearson 

Correlation 

0.216 -0.129 0.179 0.353 0.223 -

0.106 

0.000 0.770 1 

 Sig. (2-tailed) 0.500 0.688 0.578 0.261 0.487 0.742 0.999 0.003  

*Bold numbers indicate significance at p < 0.05 
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3.7 Conjugation experiments 

A total of 55 Gram-negative and 2 Gram-positive tetracycline-resistant bacteria were tested 

for conjugation. Forty of 57 total were able to transfer tetracycline resistance to the recipient.  Out 

of 55 Gram-negative isolates, 28 were from Stenotrophomons, followed by, 17 from 

Chryseobacterium, 5 from Sphingobacterium, and one each from remaining genera. Around 72 % 

(20/28) Stenotrophomonas isolates successfully transferred tetracycline resistance to the recipient 

at a transfer rate ranged from 2.28 x 10-4/recipient cell to 3.36 x10-3/recipient cell. Conjugation 

was successful in 64.7% Chryseobacterium isolates at a transfer rate ranged from 8.40 x 10-

4/recipient cell to 2.43 x 10-3/recipient cell. Four out of five (80%) Sphingobacterium isolates were 

positive for conjugation. The transfer rate ranged from 7.20 x 10-4/recipient cell to 1.81 x 10-

3/recipient cell. All remaining isolates also successfullytransferred tetracycline resistance into 

recipient cells. Both Gram-positive bacteria, Microbacterium and Curtobacterium, were positive 

for conjugation and the transfer rate was 1.75 x 10-4/recipient cell and 2.64 x 10-4/recipient  

respectively (Table 7).  
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Table 7. Conjugation Results of 40 Soil Isolates from Three Gardens 

Garden Source 
Donor (Tetr) 

(Number of isolates) 

Conjugation rate 

(range) 

E 

Soil 

Chryseobacterium sp. (6) 9.15 x 10-4 - 2.43 x 10-3 

Curtobacterium sp. (1) 2.64 x 10-4 

Dyadobacter sp. (1) 1.53 x 10-3 

Lysobacter sp. (1) 8.85 x 10-4 

Microbacterium sp. (1) 1.75 x 10-4 

Sphingobacterium sp. (3) 7.20 x 10-4 – 1.69 x 10-3 

Stenotrophomonas sp. (14) 2.28 x 10-4 – 3.66 x 10-3 

Variovorax sp. (1) 1.44 x 10-3 

Vegetable 
Chryseobacterium sp. (1) 1.14 x 10-3 

Stenotrophomonas sp. (1) 1.33 x 10-3 

G 

Soil Chryseobacterium sp. (1) 8.40 x 10-4 

Vegetable 

Chryseobacterium sp. (1) 1.87 x 10-3 

Sphingobacterium sp. (1) 1.81 x 10-3 

Stenotrophomonas sp. (1) 1.53 x 10-3 

O 

Soil 
Pseudomonas sp. (1) 1.44 x 10-3 

Stenotrophomonas sp. (1) 2.43 x 10-3 

Vegetable 
Chryseobacterium sp. (1) 1.60 x 10-3 

Stenotrophomonas sp. (3) 8.80 x 10-4 - 1.75 x 10-3 

 

3.8 Whole-genome sequencing revealed the presence of antibiotic resistance genes 

A number of antibiotic resistance genes were detected in the sequenced isolates. Efflux pumps 

were the most common genes identified and found in # of 24 sequences. Resistance genes related 

to efflux pump AdeIJK, were detected in Acinetobacter calcoaceticus, which confer resistance to 

multiple drugs, including beta-lactams, tetracycline, chloramphenicol, pyronine, lincosamides, 

erythromycin, fluoroquinolones, novobiocin, fusidic acid, rifampin, acridine, trimethoprim, 

safranin, and sodium dodecyl sulfate. Chryseobacterium showed the presence of lnd-4 and cgb-1 

b-lactamase resistance genes which can confer resistance to landomycin and beta-lactams, 

respectively. Genes related to multidrug-resistant Mex pump, for example, mexB, mexF, mexK, 

and mexW, were detected in Lysobacter gummosus and Pseudomonas fluorescenns. Quinolone 
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resistance gene oqxB and erythromycin resistance gene ermB were identidied in Pantoea isolates. 

Rhizobium isolates showed the presence of cat gene which confers resistance to chloramphenicol. 

Multidrug-resistant gene crp was detected in Rahnella and Pantoea. Stenotrophomonas isolates 

showed the presence of oqxB gene conferring resistance to quinolone, and smeD, smeE, and smeF 

genes conferring resistance to carbapenem. Rifampin, tetracycline, and vancomycin resistance 

genes were detected in Gram-positive isolates, Bacillus and Microbacterium (Table 8). 

The presence of antibiotic resistance genes seemed to be independent of resistance phenotypes. 

There were isolates with antibiotic resistance genes identified demonstrating pan susceptible to all 

antibiotics tested. Isolates showing multidrug resistance phenotypes were also found to carry no 

antibiotic resistance genes.    
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 Table 8. Identified Antibiotic Resistance Genes by Whole-Genome Sequencing in 24 selected 

isolates 

Bacteria Identified Antibiotic Resistance 

Genes (ARGs) 
Resistance Phenotypes 

Acinetobacter 

calcoaceticus 

oxa, adeG, adc, abeS, adeH, abeM, 

adeJ, adeK, adeI 

AMP, AUG2, AXO, CHL, 

FOX, GEN,  

Chryseobacterium lathyri Ind-4 AMP, AUG2, AXO, CHL, 

FOX, GEN, NAL, TET 

Chryseobacterium sp. None AMP, AUG2, AXO, CIP, FOX, 

GEN, NAL, TET 

Chryseobacterium sp. cgb-1 b-lactamase AMP, AUG2, AXO, CIP, CHL, 

FOX, GEN, TET 

Lysobacter gummosus smeE, mexK AMP, AXO 

Lysobacter sp. smeE AMP, AUG2, AXO, CHL, CIP, 

FOX, TET,  

Pantoea agglomerans oqxB, emrB, crp AMP, AUG2, AXO, CHL, 

FOX, GEN, NAL,  

Pantoea sp. oqxB, emrB, crp NONE 

Pseudomonas fluorescens mexB, mexK, mexW, mexF AMP, AUG2, AXO, CHL, 

FOX, NAL 

Rahnella sp. crp AMP, AUG2, AXO, FOX, , 

NAL, TET 

Rhizobium radiobacter cat AMP, AUG2, CHL, FOX, NAL 

Rhizobium sp. cat CHL, FOX 

Rhizobium sp. cat AMP, CHL, NAL 

Sphingobacterium faecium None AMP, CHL, FOX, GEN, NAL, 

TET 

Sphingobacterium sp. None AMP, CHL, FOX, GEN, NAL 

Stenotrophomonas 

maltophilia 

oqxB, smeD, smeE, smeF AMP, AUG2, AXO, CIP, FOX, 

GEN, TET 

Stenotrophomonas 

maltophilia 

smeD, smeE, smeF, oqxB AMP, AUG2, AXO, CIP, FOX, 

GEN, TET 

Stenotrophomonas 

maltophilia 

oqxB, smeD, smeE, smeF AMP, AUG2, AXO, CIP, FOX, 

GEN, NAL, TET 

Stenotrophomonas sp. oqxB, smeD, smeE, smeF AMP, AUG2, AXO, CIP, FOX, 

GEN, TET 

Bacillus bataviensis rphB GEN, KAN , PEN 

Lysinibacillus fusiformis None CIP, ERY, GEN, KAN, PEN 

Lysinibacillus sphaericus None GEN, KAN , PEN 

Microbacterium sp. tet42, rifampin resistance CIP, DAP, ERY, GEN, KAN, 

LIN, NIT, PEN, SYN, TET 

Microbacterium sp. tet42, vanRO CIP, CHL, ERY, GEN, KAN, 

PEN, SYN,  TET 
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AMP=Ampicillin, AUG2=Amoxicillin / clavulanic acid 2:1 ratio, AXO=Ceftriaxone, CIP=Ciprofloxacin, 

CHL=Chloramphenicol, FOX=Cefoxitin, GEN=Gentamicin, KAN=Kanamycin, NAL=Nalidixic Acid, 

PEN=Penicillin, SYN=Quinupristin / dalfopristin, TET=Tetracycline 

4. Discussion 

In this study, the phyla and genera identified by both culturing and high throughput 16S rRNA 

sequencing represents general soil bacteria (Janssen 2006). Top predominant phylum identified by 

culturable and 16S rRNA sequencing were similar, but dissimilarly was observed ranking wise.  A 

noticeable discrepancy was observed between these methods at genus level, which was inevitable 

as culturable bacteria represents only 1% of total bacterial diversity in soil (Demaneche et al., 

2008; Schloss and Handelsman 2003), and 16S rRNA sequencing captures both culturable and 

non-culturable microorganisms. Moreover, variation in dominant phylum and genus was also 

observed among gardens. Soil attributes and land use could have caused this variation(Jesus et al., 

2009). The 16S rRNA sequencing of this study identified Proteobacteria as the most prevalent 

phylum in all three gardens, which was different than the findings of Brazilian Atlantic Forest soils 

where Acidobacteria was the most prevalent. More than 9% of the bacteria were unidentified at 

phylum level in this study which was higher than one of the most biodiversity hot spot in the world 

where 6.5% of the bacteria were unidentified (Faoro et al., 2010). This high percentage of 

unidentified bacteria suggests urban agricultural environment as a potential habitat for diverse 

bacteria. 

High antibiotic resistance phenotypes were observed in this study, which suggests the inherited 

presence of antibiotic resistance determinants in the environmental bacteria. During literature 

search we found very limited number of studies focused on culturable soil bacteria (Walsh 2013; 

D'Costa et al., 2006; Wright 2010). These studies reported similar findings of the current study 

where majority of the isolated bacteria were multi-drug resistant to all known antibiotic classes 
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currently available in the market, from natural to semi-synthetic to synthetic. However, it should 

be noted that there are no standard breakpoints for environmental microorganisms as for clinical 

isolates, making it a challenge in comparing data across studies. Some researchers have used a 

general 20 µg/ml for all antibiotics as the resistance breakpoint in soil bacteria ((Walsh and Duffy 

2013; D'Costa et al., 2006). The current study used CLSI guidelines for E. coli and S. aureus, 

which addressed the antibiotic variation but only allowed the interpretation for those antibiotics 

that have resistance breakpoints. Since the implication of antibiotic resistance in clinical bacteria 

may not apply to bacteria of environmental origin, establishing “ecological breakpoints” or even 

standardized protocols in environmental investigations will be of great value for inter-study 

comparisons (Thanner et al., 2016). To achieve this goal, collecting more data on environmental 

bacterial species and isolates is the key.  

Isolates recovered from both soil and vegetables showed higher antibiotic resistance 

phenotypes. We have noticed a small variation in the prevalence of antibiotic resistance 

phenotypes between soil and vegetables. Interestingly, for some antibiotics we have observed 

higher antibiotic resistance prevalence in vegetable isolates compared to the soil isolates. For 

example, Gram-negative isolates from vegetables showed higher prevalence for cefoxitin, 

amoxicillin/clavulanic acid, chloramphenicol, gentamicin, and tetracycline, compared to the 

isolates of soil. Similarly, in Gram-positive bacteria, the prevalence of tetracycline in vegetable 

isolates exceeded the prevalence of soil isolates. These findings suggest that, along with soil, 

vegetables can function as a reservoir of antibiotic resistance, and in some cases even more 

potential than soil. 

The low antibiotic concentrations detected in this study were an indication of little or no 

influence of external antibiotics on the soils. The sporadic presence of antibiotics can be mainly 
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due to the antibiotic-producing soil bacteria (Martinez 2008) in contrast to agricultural soils 

adjacent to agricultural production that had antibiotics detected at the scale of mg/kg (Ji et al., 

2012). Although the antibiotic concentrations reported in the current study were below what would 

normally be needed to select antibiotic resistance (Berglund 2015), the role of antibiotic residues 

as regulatory substances and signaling molecules should be explored because sub-inhibitory 

antibiotics may be able to mediate the dissemination of antibiotic resistance, especially since high 

prevalence of antibiotic resistance is common in the environment.  

Antibiotics were frequently detected in this study in the vegetable samples, although 

variation in concentration was observed between gardens. This variation can be explained by 

antibiotics uptake mechanism by vegetables. Irrigation practices of the gardens can cause this 

variation as vegetables acquire antibiotics by water transport and passive absorption mechanisms. 

Water solubility of the antibiotics in soil can also cause this variation as all antibiotics are not 

equally soluble in water (Hu et al., 2010). The concentration of antibiotics detected in the vegetable 

samples in this study was in agreement with another study where antibiotic concentrations were 

ranges from 0.1 -532 µg/kg. The concentration of antibiotics they detected in the leafy vegetables 

were higher than the root vegetables (Hu et al., 2010), but we found root vegetables accumulated 

more antibiotics than the leafy vegetables. Close contact of the root vegetables with soil could be 

the reason of high antibiotic concentration.  

It has been argued that metal contamination can play a role in the dissemination of 

antibiotic resistance into pathogenic bacteria (Summers 2002; Summers et al., 1993; Alonso et al., 

2001). A number of studies documented that metal resistance coexisted with antibiotic resistance 

(Belliveau et al., 1991; Mcentee et al., 1986). In our study, no significant correlation was observed 

between metal concentrations and antibiotic resistance. Zinc and lead concentrations in soil 
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samples were below the normal range detected by a national agricultural soil survey conducted 

throughout the USA. This national survey carefully selected a total of 3045 soil samples from 

major agricultural production areas in the USA by avoiding the areas of possible anthropogenic 

and other contaminations and found that average concentration of zinc and lead were 42.9 mg/kg 

and 10.6 mg/kg, respectively (Holmgren et al., 1993); whereas we found maximum 0.192 mg/kg 

of zinc and 0.145 mg/kg lead in our study sites. This is a great indication of soil safety in urban 

agriculture in metro Detroit despite that there is currently no legal requirement for soil testing 

before opening an urban garden/farm. Very low concentrations of metals might be another reason 

for them not showing positive correlations with antibiotic resistance as it is generally accepted that 

high concentration of metals can co-select antibiotic resistance by co-resistance (Hasman and 

Aarestrup 2002) or cross-resistance (Hernandez et al., 1998). 

Bacteria from diverse genera were able to transfer tetracycline resistance via conjugation, 

which suggests that environmental bacteria have the potential to spread antibiotic resistance to 

pathogenic bacteria if they share a common habitat (Matte-Tailliez et al., 2002; Wiedenbeck and 

Cohan 2011). Not much variation was observed in conjugation rate between different genus and 

different gardens. Variation in conjugation rate was also minimum between soil and vegetable 

isolates, indicating that antibiotic-resistant isolates of vegetable originhave the similar potential of 

disseminating antibiotic resistance genes. 

Efflux pumps seemed to play an important role in conferring multidrug resistance in soil 

bacteria. This is evidenced by the identification of multidrug efflux pump genes, including adeI, 

adeJ, adeK, abeM, abeS, and mexB by whole-genome sequencing. Over-expression of these 

pumps can occur if they are exposed to any homologous substrates specific to the pump. Increased 

expression of these genes can be associated with antibiotic resistance to multiple drugs (Webber 
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and Piddock 2003). Acinetobacter baumannii, a recently emerging clinical pathogen, were 

frequently found to carry adeI, adeJ, and adeK genes (Kor et al., 2014). Similar genes were 

detected in this study in Acinetobacter calcoaceticus, which suggests a possible public health 

significance, as AdeIJK pump confers resistance to beta-lactams, tetracycline, chloramphenicol, 

pyronine, lincosamides, erythromycin, fluoroquinolones, novobiocin, fusidic acid, rifampin, 

acridine, trimethoprim, safranin, and sodium dodecyl sulfate (Damier-Piolle et al., 2008). The 

smeF gene, related to smeDEF efflux pump, was also detected in all Stenotrophomonas maltophilia 

isolates which are considered as an emerging opportunistic pathogen. A previous study reported 

that, over-expression of smeF gene can facilitate multidrug resistance in Stenotrophomonas 

maltophilia (Zhang et al., 2001). We have found mexB gene, which encode Mex pump, in one of 

our isolates, Pseudomonas fluorescence. Mex pumps were reported as a contributor of antibiotic 

resistance in clinically important Pseudomonas aeruginosa (Poole 2000). Over-expression of Mex 

pump can promote resistance to beta-lactams, fluoroquinolones, trimethoprim, and 

chloramphenicol (Chuanchuen et al., 2001). Antibiotic resistance genes detected in environmental 

bacteria in this study proves that both environmental and clinical bacteria share many common 

genes, which is an indication of their possible public health significance and that these resistance 

genes may have arisen from environmental origins. 

However, whole-genome sequencing findings failed to correlate with resistance 

phenotypes in some cases. Rhizobium sequence data showed the presence of cat which confers 

chloramphenicol resistance, but phenotypic data showed resistance to multiple antibiotics. This 

discrepancy can be explained by the database bias due to the presence of novel and unidentified 

resistance genes. Also, gene search was based on the most stringent criterion (E value = 0) and 

gene sequences not showing 100% match may have been left out. On the opposite side, the 
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identification of antibiotic resistance genes in pan susceptible isolates could be due to the failure 

of gene expression.  

The identification of antibiotic-resistant bacteria from vegetables produced in urban 

gardens suggests the potential of antibiotic resistance transfer along the food chain.  

Finally, urban agricultural environment is a rich source of antibiotic-resistant bacteria and 

antibiotic resistance genes. Vegetables grown in or on the soil can acquire antibiotic-resistant 

bacteria from soil and can act as a potential reservoir of antibiotic resistance in the spreading of 

antibiotic resistance. The mixed observation on the correlation between antibiotic resistance and 

antibiotics and metals calls for further research on specific soil contaminants at various 

concentrations. More gardens with possible anthropogenic pollution need to be investigated to 

establish the relationship between antibiotic resistance and environmental pollutants. The presence 

of clinically relevant antibiotic resistance genes in environmental bacteria and their potential of 

transferring antibiotic resistance indicate the necessity to explore this understudied source to better 

understand the presence and persistence of antibiotic resistance in the environment.    
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CONCLUSIONS 

This study demonstrated that urban agricultural soil and vegetables have a diverse 

population of antibiotic resistance phenotypes and genotypes. Phenotypic determination of 

microbial profile and antibiotic resistance combined with high-throughput 16S rRNA sequencing, 

whole genome sequencing, and metagenomics proved to be a great strategy to study the nature and 

extent of antibiotic resistance in the environment.  The positive correlation between antibiotic 

resistance genes and metal resistance genes provides indirect evidence of possible co-selection of 

antibiotic resistance by heavy metals. The data call for further investigation on the impact of 

alternative selective pressure from non-antibiotics at both phenotypic and molecular levels.  

Soil bacteria isolated from urban agricultural environment were able to transfer antibiotic 

resistance via conjugation, suggesting their great potential of spreading antibiotic resistance in the 

environment and through the food chain. Efflux pumps may play an important role in conferring 

multidrug resistance in soil bacteria. The data added substantial information to the environmental 

database of antibiotic resistance and opened a new venue to understanding the anthropogenic 

impact on antibiotic resistance in food production environment.   
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ABSTRACT 

INVESTIGATING ANTIBIOTIC RESISTANCE IN URBAN AGRICULTURAL 

ENVIRONMENT USING PHENOTYPIC, GENOMIC, AND METAGENOMIC TOOLS 

by 
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Advisor: Dr. Yifan Zhang 
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Degree: Doctor of Philosophy 

Urban agricultural environment can be an important reservoir of antibiotic resistance and 

have great food safety and public health indications. This study was to investigate antibiotic-

resistant bacteria and antibiotic resistance genes in urban agricultural environment using 

phenotypic, whole genome sequencing, and metagenomic tools. Three urban community gardens 

from metro Detroit were studied in two phases.  

First phase of this study recovered a total of 207 soil bacteria from 41 soil samples collected 

from an urban agricultural garden. The most prevalent antibiotic resistance phenotypes 

demonstrated by Gram-negative bacteria was the resistance to ampicillin (94.2%), followed by 

chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%), and ceftriaxone (71.1%). Gram-

positive bacteria were all resistant to gentamicin, kanamycin, and penicillin. Genes encoding 

resistance to quinolone, β-lactam, and tetracycline were the most prevalent and abundant in the 

soil. qepA and tetA, both encoding efflux pumps, predominated in quinolone and tetracycline 

resistance genes tested, respectively. Positive correlation (p < 0.05) was identified among groups 

of antibiotic resistance genes and between antibiotic resistance genes and metal resistance genes.  
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Second phase of this study isolated a total of 226 bacteria from 15 soil samples and 45 

vegetable samples from all three urban gardens. Multidrug resistance was identified. The 

percentages of resistant bacteria to some antibiotics (cefoxitin, amoxicillin/clavulanic acid, 

chloramphenicol, gentamicin, and tetracycline) were higher in vegetables than those in soil. 

Transfer of tetracycline resistance by conjugation was observed in bacteria of both soil and 

vegetable origin. Efflux pump genes were common in soil bacteria as identified by whole genome 

sequencing. For example, adeI, adeJ, adeK, mexB, mexK, and mexF were detected in antibiotic-

resistant bacteria.  

The concentrations of soil contaminants detected in this study were either below what 

would normally be needed to select antibiotic resistance (antibiotics) or below the EPA 

recommended level (metals). Although no significant correlation was observed between antibiotic 

resistance and heavy metals, the positive correlation between antibiotic resistance genes and metal 

resistance genes at the genomic level still suggests the need to explore the possible co-selection of 

antibiotic resistance by heavy metals. 

The data demonstrated a diverse population of antibiotic resistance phenotypes and 

genotypes in urban agricultural soil and vegetables. Phenotypic determination together with soil 

metagenomics can be a valuable tool to study the nature and extent of antibiotic resistance in the 

environment. Due to the increasing evidence of the public health implication of naturally-occurring 

antibiotic resistance and the scarcity of environmental data in this regard, establishing ecological 

breakpoints for environmental antibiotic resistance interpretation and identifying environmental 

indicators to monitor antibiotic resistance appear to be important research areas to pursue.   
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